6.記cos(-80°)=k,那么tan(-80o)=( 。
A.-$\frac{\sqrt{1-{k}^{2}}}{k}$B.$\frac{\sqrt{1-{k}^{2}}}{k}$C.$\frac{k}{\sqrt{1-{k}^{2}}}$D.-$\frac{k}{\sqrt{1-{k}^{2}}}$

分析 由已知結(jié)合平方關(guān)系求得sin80°,再由誘導公式及商的關(guān)系求得tan(-80o)的值.

解答 解:∵cos(-80°)=k,
∴$sin80°=\sqrt{1-co{s^2}80°}=\sqrt{1-co{s^2}({-80°})}=\sqrt{1-{k^2}}$,
∴tan(-80°)=-tan80°=-$\frac{sin80°}{cos80°}$=$-\frac{{\sqrt{1-{k^2}}}}{k}$,
故選:A.

點評 本題考查利用誘導公式及同角三角函數(shù)基本關(guān)系式化簡求值,是基礎(chǔ)的計算題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.(1)已知圓M過點C(1,-1),D(-1,1),且圓心M在x+y-2=0上.求圓M的方程;
(2)圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切,求直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某產(chǎn)品的廣告費用x萬元與銷售額y萬元的統(tǒng)計數(shù)據(jù)如下表
廣告費用x(萬元)2345
銷售額y(萬元)26m4954
根據(jù)上表可得回歸方程$\widehat{y}$=9x+10.5,則m為( 。
A.36B.37C.38D.39

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.在△ABC中,已知∠A=45°,∠B=75°,點D在AB上,且CD=10.若CD⊥AB,則AB=$30-10\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.當x>1>y時,有x2-2xy+y2≥m[xy-(x+y)+1]恒成立,則實數(shù)m的取值范圍為[-4,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)$f(x)=\frac{1}{3}{x^3}+{x^2}-3x$,討論函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知a1>a2>a3>1,則使得${a_i}{x^2}+(a_i^2+1)x+{a_i}>0$(i=1,2,3)都成立的x的取值范圍是( 。
A.$(0,\frac{1}{a_3})$B.$(-∞,-{a_3})∪(-\frac{1}{a_3},+∞)$
C.$(-∞,-{a_3}]∪(-\frac{1}{a_3},+∞)$D.$(-∞,-\frac{1}{a_3})∪(-{a_3},+∞)$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.下列說法錯誤的是( 。
A.利用樣本數(shù)據(jù)的散點圖可以直觀判斷兩個變量是否可用線性關(guān)系表示
B.等高條形圖表示的是分類變量的百分比
C.比較兩個模型的擬合函數(shù)效果,可以比較殘差平方和的大小,殘差平方和越大的模型,擬合效果越好
D.與兩個比值相差越大,兩個分類變量相關(guān)的可能性就越大

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.如圖,已知△ABC關(guān)于AC邊的對稱圖形為△ADC,延長BC邊交AD于點E,且AE=5,DE=2,tan∠BAC=$\frac{1}{2}$.
(1)求BC邊的長;
(2)求cos∠ACB的值.

查看答案和解析>>

同步練習冊答案