設(shè)A={x|x是不大于10的正奇數(shù)},B={x|x是12的正約數(shù)},則A∩B=﹛
 
﹜.
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:找出不大于10的正奇數(shù)確定出A,找出12的正約數(shù)確定出B,求出A與B的交集即可.
解答: 解:∵A={x|x是不大于10的正奇數(shù)}={1,3,5,7,9},B={x|x是12的正約數(shù)}={1,2,3,4,6,12},
∴A∩B={1,3}.
故答案為:1,3
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex+ax
(1)當(dāng)-e<a≤0時(shí),證明:對(duì)于任意x∈R,f(x)>0成立;
(2)當(dāng)a=-1時(shí),是否存在x0∈(0,+∞),使曲線C:g(x)=exlnx-f(x)在點(diǎn)x=x0處的切線斜率與f(x)在R上的最小值相等?若存在,求符合條件的x0的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A,B,C的對(duì)邊分別為a,b,c,且2ccos2
A
2
)=b+c,則△ABC的形狀是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:x2-2x-8<0,命題q:|x-a|<1,若¬p是q的必要不充分條件,則a的取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn=3n2-2n+1,則通項(xiàng)公式an=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,P是BC邊中點(diǎn),角A,B,C的對(duì)邊分別是a,b,c,若c
AC
+a
PA
+b
PB
=
0
,則△ABC的形狀為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f′(x)是函數(shù)f(x)=x3+ax2+(a-6)x(a∈R)的導(dǎo)函數(shù),若f′(x)滿足f′(x+1)=f′(1-x),則以下結(jié)論正確的是(  )
A、函數(shù)f(x)的極大值為0
B、函數(shù)f(x)的極小值為5
C、函數(shù)f(x)的極大值為27
D、函數(shù)f(x)的極小值為-27

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=21.2,b=(
1
2
-0.8,c=log32,則( 。
A、a>b>c
B、a>c>b
C、c>a>b
D、b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a為常數(shù),函數(shù)f(x)=x2+aln(1+x)有兩個(gè)極值點(diǎn)x1,x2(x1<x2),則( 。
A、f(x2)<
1-2ln2
4
B、f(x2)>
1-2lnx
4
C、f(x2)>
2ln2+3
8
D、f(x2)<
3ln2+4
8

查看答案和解析>>

同步練習(xí)冊(cè)答案