【題目】

在某校組織的“共筑中國夢”競賽活動中,甲、乙兩班各有6位選手參賽,在第一輪筆試環(huán)節(jié)中,評委將他們的筆試成績作為樣本數(shù)據(jù),繪制成如下圖所示的莖葉圖.為了增加結(jié)果的神秘感,主持人暫時沒有公布甲、乙兩班最后一位選手的成績.

(Ⅰ)求乙班總分超過甲班的概率;

(Ⅱ)主持人最后宣布:甲班第六位選手的得分是90分,乙班第六位選手的得分是97分.請你從平均分和方差的角度來分析兩個班的選手的情況.

【答案】(Ⅰ);(Ⅱ)甲班選手間的實力相當,相差不大,乙班選手間實力懸殊,差距較大.

【解析】試題分析:()先分別求出甲班前5位選手的總分和乙班前5位選手的總分,由此利用列舉法能求出乙班總分超過甲班的概率;()分別求出甲、乙兩班的平均分、方差,由此能求出結(jié)果.

試題解析:(Ⅰ)甲班前5位選手的總分為,

乙班前5位選手的總分為

若乙班總分超過甲班,則甲、乙兩班第六位選手的成績可分別為,,三種.

所以,乙班總分超過甲班的概率為

(Ⅱ)甲班平均分為,

乙班平均分為,

,

兩班的平均分相同,但甲班選手的方差小于乙班,所以甲班選手間的實力相當,相差不大,乙班選手間實力懸殊,差距較大.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 滿足關(guān)系(其中是常數(shù)).

)如果, ,求函數(shù)的值域;

)如果 ,且對任意,存在, ,使得恒成立,求的最小值;

)如果,求函數(shù)的最小正周期(只需寫出結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)若函數(shù)處的切線方程為,求的值;

(II)討論方程的解的個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)二次函數(shù)f(x)滿足f(2+x)=f(2-x),對于x∈R恒成立,且f(x)=0的兩個實數(shù)根的平方和為10,f(x)的圖象過點(0,3),求f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的右焦點與拋物線的焦點重合,點M在橢圓E上.

(Ⅰ)求橢圓E的標準方程;

(Ⅱ)設(shè),直線與橢圓E交于A,B兩點,若直線PA,PB關(guān)于x軸對稱,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點與短軸兩端點構(gòu)成一個面積為2的等腰直角三角形,為坐標原點.

(1)求橢圓的方程;

(2)設(shè)點在橢圓上,點在直線上,且,求證:為定值;

(3)設(shè)點在橢圓上運動,,且點到直線的距離為常數(shù),求動點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1) 若x>1,求x+的最小值;

(2) 若x>0,y>0,且2x+8y-xy=0,求xy的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信紅包是一款可以實現(xiàn)收發(fā)紅包、查收記錄和提現(xiàn)的手機應(yīng)用.某網(wǎng)絡(luò)運營商對甲、乙兩個品牌各5種型號的手機在相同環(huán)境下?lián)尩降募t包個數(shù)進行統(tǒng)計,得到如下數(shù)據(jù):

手機品牌 型號

I

II

III

IV

V

甲品牌(個)

4

3

8

6

12

乙品牌(乙)

5

7

9

4

3

手機品牌 紅包個數(shù)

優(yōu)

非優(yōu)

合計

甲品牌(個)

乙品牌(個)

合計

(1)如果搶到紅包個數(shù)超過5個的手機型號為“優(yōu)”,否則為“非優(yōu)”,請完成上述2×2列聯(lián)表,據(jù)此判斷是否有85%的把握認為搶到的紅包個數(shù)與手機品牌有關(guān)?

(2)如果不考慮其他因素,要從甲品牌的5種型號中選出3種型號的手機進行大規(guī)模宣傳銷售.

①求在型號I被選中的條件下,型號II也被選中的概率;

②以表示選中的手機型號中搶到的紅包超過5個的型號種數(shù),求隨機變量的分布列及數(shù)學(xué)期望.

下面臨界值表供參考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式: ,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)“喜歡空間想象”與“性別”有關(guān),某數(shù)學(xué)興趣小組為了驗證此結(jié)論,從全體組員中按分層抽樣的方法抽取50名同學(xué)(男生30人、女生20人),給每位同學(xué)立體幾何題、代數(shù)題各一道,讓各位同學(xué)自由選擇一道題進行解答,選題情況統(tǒng)計如下表:(單位:人)

立體幾何題

代數(shù)題

總計

男同學(xué)

22

8

30

女同學(xué)

8

12

20

總計

30

20

50

(1)能否有97.5%以上的把握認為“喜歡空間想象”與“性別”有關(guān)?

(2)經(jīng)統(tǒng)計得,選擇做立體幾何題的學(xué)生正答率為,且答對的學(xué)生中男生人數(shù)是女生人數(shù)的5倍,現(xiàn)從選擇做幾何題的8名女生中任意抽取兩人對她們的答題情況進行研究,記抽取的兩人中答對的人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

同步練習(xí)冊答案