已知x、y滿足(x-1)2+y2=1,則S=x2+y2+2x-2y+2的最小值是(  )
A、6-2
5
B、
5
-1
C、
2
D、2
考點:圓方程的綜合應(yīng)用
專題:計算題,直線與圓
分析:S=x2+y2+2x-2y+2=(x+1)2+(y-1)2,轉(zhuǎn)化為圓上的點(x,y)到點(-1,1)的距離的平方,即可得出結(jié)論.
解答: 解:S=x2+y2+2x-2y+2=(x+1)2+(y-1)2,轉(zhuǎn)化為圓上的點(x,y)到點(-1,1)的距離的平方,
由題意知最短距離為
(1+1)2+1
-1,平方后為6-2
5

故選:A.
點評:本題考查圓方程的綜合應(yīng)用,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
4
+y2=1,F(xiàn)1、F2是其左、右兩焦點,直線l:y=x+3,試在直線l上找一點P,使得∠F1PF2最大,并求出P點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域是D={x∈R|x≠0},對任意x1,x2∈D都有:f(x1•x2)=f(x1)+f(x2),且當(dāng)x>1時,f(x)>0.給出結(jié)論:
①f(x)是偶函數(shù);
②f(x)是奇函數(shù);
③f(x)在(0,+∞)上是增函數(shù);
④f(x)在(0,+∞)上是減函數(shù).
則正確結(jié)論的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD中點,M是棱PC上的點,PD=PA=2,BC=
1
2
AD=1,CD=
3

(1)若點M是棱PC的中點,求證:PA∥平面BMQ;
(2)求證:平面PQB⊥底面PAD;
(3)(僅理科做)若PM=3MC,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-x2+ax-b.若a、b都是從區(qū)間[0,4]內(nèi)任取的一個數(shù),則f(1)>0成立的概率是(  )
A、
9
16
B、
9
32
C、
7
16
D、
23
32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①函數(shù)y=lg(x2-ax-a)的值域為R,則a∈(-4,0);
②O是△ABC所在平面上一定點,動點P滿足
OP
=
OA
+λ(
AB
+
AC
)
且λ∈[0,+∞),則P的軌跡一定經(jīng)過△ABC的重心;
③△ABC中,角A,B,C所對的邊分別為a,b,c,若acosA=bcosB,則△ABC是等腰三角形;
④若函數(shù)f(x)=x+log2(x+
x2+1
),則“m+n≥0”是“f(m)+f(n)≥0”的充要條件.其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2(log2x)2-2a(log2x)+b,當(dāng)x=
1
2
時有最小值-8,
(1)求a,b的值;     
(2)當(dāng)x∈[
1
4
,8]時,求f(x)的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l的參數(shù)方程為
x=-1-
3
2
t
y=
3
+
1
2
t
(t
為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為
3
x+y.
(1)求圓C的直角坐標(biāo)方程;
(2)若P(x,y)是直線l與圓面ρ≤4sin(θ-
π
6
)的公共點,求
3
x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:sin245°+sin2105°+sin2165°=
3
2
;sin210°+sin270°+sin2130°=
3
2
,
通過觀察上述兩等式的規(guī)律,請你寫出一般性的命題,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案