3.若函數(shù)f(x)=x${\;}^{\frac{1}{2}}$,則f(x)的反函數(shù)f-1(x)的定義域是[0,+∞).

分析 由函數(shù)f(x)=x${\;}^{\frac{1}{2}}$≥0,即可得出f(x)的反函數(shù)f-1(x)的定義域.

解答 解:∵函數(shù)f(x)=x${\;}^{\frac{1}{2}}$≥0,則f(x)的反函數(shù)f-1(x)的定義域是[0,+∞).
故答案為:[0,+∞).

點(diǎn)評 本題考查了互為反函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.如果復(fù)數(shù)(1+bi)(2+i)是純虛數(shù),則$|{\frac{2b+3i}{1+bi}}|$的值為$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在數(shù)列{an}中,a1=2,(an+1-1)(an-1)+2an+1-2an=0(n∈N*),若an<$\frac{51}{50}$,則n的最小值為100.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,等腰梯形ABCD,BC=$\frac{1}{2}$AD,將直徑為4的半圓內(nèi)的陰影部分以直徑AD所在直線為軸,旋轉(zhuǎn)一周得到一幾何體,求該幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若兩條異面直線所成的角為90°,則稱這對異面直線為“理想異面直線對”,在正方體所有棱所在的直線中,“理想異面直線對”的對數(shù)為( 。
A.12B.24C.48D.96

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知數(shù)列{an},a1=1,a2=2,前n項(xiàng)和為Sn,且滿足(Sn+2-Sn+1)-2(Sn+1-Sn)=2,n∈N*,則{an}的通項(xiàng)an=$\left\{\begin{array}{l}{1,n=1}\\{{2}^{n}-2,n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知sinx=$\frac{3}{5}$,x∈($\frac{π}{2}$,π),則行列式$|\begin{array}{l}{sinx}&{-1}\\{1}&{secx}\end{array}|$的值等于$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.圓柱的軸截面是正方形,其底面半徑為r,則它的體積是2πr3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$=(x,2),$\overrightarrow$=(2,x),若$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$+$\overrightarrow$夾角為$\frac{π}{2}$,則|$\overrightarrow{a}$-$\overrightarrow$|=6$\sqrt{2}$或3$\sqrt{2}$.

查看答案和解析>>

同步練習(xí)冊答案