已知拋物線.過點的直線兩點.拋物線在點處的切線與在點處的切線交于點

(Ⅰ)若直線的斜率為1,求;
(Ⅱ)求面積的最小值.
(1);(2)最小值為2.

試題分析:本題主要考查直線與拋物線的位置關(guān)系、三角形面積公式等基礎(chǔ)知識,同時考查解析幾何的基本思想方法和運算求解能力.第一問,由已知得出直線l的方程,與拋物線聯(lián)立,得出兩點的坐標(biāo),然后利用兩點間距離公式求;第二問,由于直線l的斜率不知道,所以設(shè)出直線方程,設(shè)出點的坐標(biāo),聯(lián)立直線與拋物線方程,得出兩根之和,兩根之積,設(shè)出在點處的切線方程,求出交點的坐標(biāo),利用點到直線的距離公式求出的高,再求,代入到三角形面積公式中,再把兩根之和,兩根之積代入得到關(guān)于的表達(dá)式,利用配方法求最值.
試題解析:(Ⅰ)由題意知,直線的方程為,由消去解得, 
所以.           6分
(Ⅱ)設(shè)直線l的方程為,設(shè)點,
消去整理得,
, ,
又因為,所以,拋物線在點處的切線方程分別為,
得兩切線的交點.所以點到直線的距離為
又因為
設(shè)的面積為,所以(當(dāng)時取到等號).
所以面積的最小值為2.                                  14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(1)已知定點、,動點N滿足(O為坐標(biāo)原點),,,,求點P的軌跡方程.

(2)如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,

(。┰O(shè)直線的斜率分別為、,求證:為定值;
(ⅱ)當(dāng)點運動時,以為直徑的圓是否經(jīng)過定點?請證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的離心率為,以橢圓的左頂點為圓心作圓,設(shè)圓與橢圓交于點與點.(12分)

(1)求橢圓的方程;(3分)
(2)求的最小值,并求此時圓的方程;(4分)
(3)設(shè)點是橢圓上異于,的任意一點,且直線分別與軸交于點為坐標(biāo)原點,求證:為定值.(5分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

矩形的中心在坐標(biāo)原點,邊軸平行,=8,=6.分別是矩形四條邊的中點,是線段的四等分點,是線段的四等分點.設(shè)直線,,的交點依次為.

(1)以為長軸,以為短軸的橢圓Q的方程;
(2)根據(jù)條件可判定點都在(1)中的橢圓Q上,請以點L為例,給出證明(即證明點L在橢圓Q上).
(3)設(shè)線段等分點從左向右依次為,線段等分點從上向下依次為,那么直線與哪條直線的交點一定在橢圓Q上?(寫出結(jié)果即可,此問不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓以坐標(biāo)軸為對稱軸,且經(jīng)過點、.記其上頂點為,右頂點為.
(1)求圓心在線段上,且與坐標(biāo)軸相切于橢圓焦點的圓的方程;
(2)在橢圓位于第一象限的弧上求一點,使的面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知定點F(2,0)和定直線,動圓P過定點F與定直線相切,記動圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點,且線段AB是此圓的直徑時,求直線AB的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓經(jīng)過點,離心率為,過點的直線與橢圓交于不同的兩點
(1)求橢圓的方程;
(2)求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓,圓,動圓與已知兩圓都外切.
(1)求動圓的圓心的軌跡的方程;
(2)直線與點的軌跡交于不同的兩點、,的中垂線與軸交于點,求點的縱坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

動點與定點的距離和它到直線的距離之比是常數(shù),記點的軌跡為曲線.
(I)求曲線的方程;
(II)設(shè)直線與曲線交于兩點,為坐標(biāo)原點,求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案