已知圓
,圓
,動圓
與已知兩圓都外切.
(1)求動圓的圓心
的軌跡
的方程;
(2)直線
與點
的軌跡
交于不同的兩點
、
,
的中垂線與
軸交于點
,求點
的縱坐標的取值范圍.
試題分析:(1)兩圓外切,則兩圓圓心之間的距離等于兩圓的半徑之和,由此得
將兩式相減得:
由雙曲線的定義可得軌跡
的方程.
(2)將直線
的方程
代入軌跡
的方程,利用根與系數(shù)的關系得到
、
的中點的坐標(用
表示),從而得
的中垂線的方程。再令
得點
的縱坐標(用
表示).根據(jù)
的范圍求出點
的縱坐標的取值范圍.
本小題中要利用
及與雙曲線右支相交求
的范圍,這是一個易錯之處.
試題解析:(1)已知兩圓的圓心、半徑分別為
設動圓
的半徑為
,由題意知:
則
所以點
在以
為焦點的雙曲線的右支上,其中
,則
由此得
的方程為:
4分
(2)將直線代入雙曲線方程并整理得:
設
的中點為
依題意,直線
與雙曲線右支交于不同兩點,故
且
則
的中垂線方程為:
令
得:
12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,
、
是其左右焦點,離心率為
,且經(jīng)過點
.
(1)求橢圓
的標準方程;
(2)若
、
分別是橢圓長軸的左右端點,
為橢圓上動點,設直線
斜率為
,且
,求直線
斜率的取值范圍;
(3)若
為橢圓上動點,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知拋物線
:
.過點
的直線
交
于
兩點.拋物線
在點
處的切線與在點
處的切線交于點
.
(Ⅰ)若直線
的斜率為1,求
;
(Ⅱ)求
面積的最小值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在平面直角坐標系
中,已知橢圓
:
的離心率
,且橢圓C上一點
到點Q
的距離最大值為4,過點
的直線交橢圓
于點
(Ⅰ)求橢圓C的方程;
(Ⅱ)設P為橢圓上一點,且滿足
(O為坐標原點),當
時,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的離心率為
,直線
與以原點為圓心、以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓
的方程;
(2)設橢圓
的左焦點為
,右焦點為
,直線
過點
,且垂直于橢圓的長軸,動直線
垂直于
,垂足為點
,線段
的垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設
與
軸交于點
,不同的兩點
在
上(
與
也不重合),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是橢圓
的右焦點,圓
與
軸交于
兩點,
是橢圓
與圓
的一個交點,且
(Ⅰ)求橢圓
的離心率;
(Ⅱ)過點
與圓
相切的直線
與
的另一交點為
,且
的面積為
,求橢圓
的方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
為拋物線
的焦點,拋物線上點
滿足
(Ⅰ)求拋物線
的方程;
(Ⅱ)
點的坐標為(
,
),過點F作斜率為
的直線與拋物線交于
、
兩點,
、
兩點的橫坐標均不為
,連結(jié)
、
并延長交拋物線于
、
兩點,設直線
的斜率為
,問
是否為定值,若是求出該定值,若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
過橢圓
的左焦點作互相垂直的兩條直線,分別交橢圓于
四點,則四邊形
面積的最大值與最小值之差為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的離心率為
,雙曲線
的漸近線與橢圓有四個交點,以這四個交點為頂點的四邊形的面積為16,則橢圓的方程為( )
查看答案和解析>>