已知橢圓
的離心率為
,直線
與以原點為圓心、以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓
的方程;
(2)設(shè)橢圓
的左焦點為
,右焦點為
,直線
過點
,且垂直于橢圓的長軸,動直線
垂直于
,垂足為點
,線段
的垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設(shè)
與
軸交于點
,不同的兩點
在
上(
與
也不重合),且滿足
,求
的取值范圍.
試題分析:本題主要考查橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、直線的方程、平面內(nèi)兩點間的距離公式等基礎(chǔ)知識,考查用代數(shù)方法研究圓錐曲線的性質(zhì),以及數(shù)形結(jié)合的數(shù)學(xué)思想方法,考查運算求解能力、綜合分析和解決問題的能力.第一問,利用直線與圓相切列出距離公式,求出橢圓中的基本量,比較簡單;第二問,考查拋物線的定義,本問主要考查理解題意的能力;第三問,與向量相結(jié)合,再加上基本不等式求最值.
試題解析:(1)由直線
與圓
相切,得
,即
.
由
,得
,所以
,所以橢圓的方程是
. (4分)
(2)由條件,知
,即動點
到定點
的距離等于它到直線
的距離,由拋物線的定義得點
的軌跡
的方程是
.(6分)
(3)由(2)知
,設(shè)
,
∴
由
,得
,
∵
,∴
,
∴
,當(dāng)且僅當(dāng)
,即
時等號成立.
又
,
∵
,∴當(dāng)
,即
時,
.
故
的取值范圍是
.(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知雙曲線
的離心率為
,右準(zhǔn)線方程為
,
(1)求雙曲線C的方程;
(2)已知直線
與雙曲線C交于不同的兩點A,B,且線段AB的中點在以雙曲線C的實軸長為直徑的圓上,求m的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知定點F(2,0)和定直線
,動圓P過定點F與定直線相切,記動圓圓心P的軌跡為曲線C
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點,且線段AB是此圓的直徑時,求直線AB的方程
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖已知橢圓的中點在原點,焦點在x軸上,長軸是短軸的2倍且過點
,平行于
的直線
在y軸的截距為
,且交橢圓與
兩點,
(1)求橢圓的方程;(2)求
的取值范圍;(3)求證:直線
、
與x軸圍成一個等腰三角形,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知圓
,圓
,動圓
與已知兩圓都外切.
(1)求動圓的圓心
的軌跡
的方程;
(2)直線
與點
的軌跡
交于不同的兩點
、
,
的中垂線與
軸交于點
,求點
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知點
是橢圓
:
上一點,
分別為
的左右焦點
,
,
的面積為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)
,過點
作直線
,交橢圓
異于
的
兩點,直線
的斜率分別為
,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
(p>0)的焦點F恰好是雙曲線
的右焦點,且兩條曲線的交點的連線過F,則該雙曲線的離心率為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,點
是橢圓
(
)的左焦點,點
,
分別是橢圓的左頂點和上頂點,橢圓的離心率為
,點
在
軸上,且
,過點
作斜率為
的直線
與由三點
,
,
確定的圓
相交于
,
兩點,滿足
.
(1)若
的面積為
,求橢圓的方程;
(2)直線
的斜率是否為定值?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
雙曲線
的左、右焦點分別為
和
,左、右頂點分別為
和
,過焦點
與
軸垂直的直線和雙曲線的一個交點為
,若
是
和
的等差中項,則該雙曲線的離心率為
.
查看答案和解析>>