設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),橢圓長(zhǎng)半軸的長(zhǎng)等于焦距,且直線(xiàn)x=4是它的右準(zhǔn)線(xiàn).
(1)求橢圓的方程;
(2)設(shè)P為橢圓右準(zhǔn)線(xiàn)上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線(xiàn)BP與橢圓相交于兩點(diǎn)B、N,求證:∠NAP為銳角.
(1)=1(2)見(jiàn)解析
(1)解:依題意,得解得從而b=,故橢圓的方程為=1.
(2)證明:由(1)得A(-2,0),B(2,0),設(shè)N(x0,y0),
∵N點(diǎn)在橢圓上,∴(4-).又N點(diǎn)異于頂點(diǎn)A、B,
∴-2<x0<2,y0≠0.由P、B、N三點(diǎn)共線(xiàn)可得P,從而=(x0+2,y0),,則·=6x0+12+=6x0+12-(2+x0)=(x0+2).
∵x0+2>0,y0≠0,∴·>0,于是∠NAP為銳角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,M、N分別是橢圓=1的頂點(diǎn),過(guò)坐標(biāo)原點(diǎn)的直線(xiàn)交橢圓于P、A兩點(diǎn),其中P在第一象限,過(guò)P作x軸的垂線(xiàn),垂足為C,連結(jié)AC,并延長(zhǎng)交橢圓于點(diǎn)B,設(shè)直線(xiàn)PA的斜率為k.

(1)若直線(xiàn)PA平分線(xiàn)段MN,求k的值;
(2)當(dāng)k=2時(shí),求點(diǎn)P到直線(xiàn)AB的距離d;
(3)對(duì)任意k>0,求證:PA⊥PB..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)和點(diǎn)分別為橢圓的中心和右焦點(diǎn),點(diǎn)為橢圓上的任意一點(diǎn),則的最小值為( )
A.B.-C.D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓=1(a>b>c>0,a2=b2+c2)的左、右焦點(diǎn)分別為F1,F(xiàn)2,若以F2為圓心,b-c為半徑作圓F2,過(guò)橢圓上一點(diǎn)P作此圓的切線(xiàn),切點(diǎn)為T(mén),且PT的最小值為(a-c),則橢圓的離心率e的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且+5=0.
 
(1)求橢圓E的離心率; (2)已知點(diǎn)D(1,0)為線(xiàn)段OF2的中點(diǎn),M為橢圓E上的動(dòng)點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長(zhǎng)交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長(zhǎng)交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線(xiàn)MN、PQ的斜率存在且分別為k1、k2,試問(wèn)是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知F1、F2是橢圓C的左、右焦點(diǎn),點(diǎn)P在橢圓上,且滿(mǎn)足PF1=2PF2,∠PF1F2=30°,則橢圓的離心率為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知是橢圓的半焦距,則的取值范圍為              .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,中心均為原點(diǎn)O的雙曲線(xiàn)與橢圓有公共焦點(diǎn),M、N是雙曲線(xiàn)的兩頂點(diǎn).若M,O,N將橢圓長(zhǎng)軸四等分,則雙曲線(xiàn)與橢圓的離心率的比值是(  )
A.3B.2C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知橢圓G的中心在坐標(biāo)原點(diǎn),長(zhǎng)軸在x軸上,離心率為,且G上一點(diǎn)到G的兩個(gè)焦點(diǎn)的距離之和為12,則橢圓G的方程為_(kāi)_____________.

查看答案和解析>>

同步練習(xí)冊(cè)答案