精英家教網 > 高中數學 > 題目詳情
已知橢圓=1(a>b>c>0,a2=b2+c2)的左、右焦點分別為F1,F2,若以F2為圓心,b-c為半徑作圓F2,過橢圓上一點P作此圓的切線,切點為T,且PT的最小值為(a-c),則橢圓的離心率e的取值范圍是________.
≤e<
因為PT=(b>c),而PF2的最小值為a-c,所以PT的最小值為.依題意有,(a-c),
所以(a-c)2≥4(b-c)2,所以a-c≥2(b-c),所以a+c≥2b,所以(a+c)2≥4(a2-c2),
所以5c2+2ac-3a2≥0,所以5e2+2e-3≥0、.
又b>0,所以b2>c2,所以a2-c2>c2,
所以2e2<1②,聯(lián)立①②,得≤e<.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

如圖,橢圓C0=1(a>b>0,a、b為常數),動圓C1:x2+y2,b<t1<a.點A1、A2分別為C0的左、右頂點,C1與C0相交于A、B、C、D四點.

(1)求直線AA1與直線A2B交點M的軌跡方程;
(2)設動圓C2:x2+y2與C0相交于A′,B′,C′,D′四點,其中b<t2<a,t1≠t2.若矩形ABCD與矩形A′B′C′D′的面積相等,證明:為定值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C的兩個焦點是)和,并且經過點,拋物線的頂點E在坐標原點,焦點恰好是橢圓C的右頂點F
(1)求橢圓C和拋物線E的標準方程;
(2)過點F作兩條斜率都存在且互相垂直的直線l1、l2,l1交拋物線E于點A、B,l2交拋物線E于點G、H,求的最小值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設A、B分別為橢圓=1(a>b>0)的左、右頂點,橢圓長半軸的長等于焦距,且直線x=4是它的右準線.
(1)求橢圓的方程;
(2)設P為橢圓右準線上不同于點(4,0)的任意一點,若直線BP與橢圓相交于兩點B、N,求證:∠NAP為銳角.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知對,直線與橢圓恒有公共點,則實數的取值范圍是
A.(0, 1)B.(0,5)C.[1,5)D.[1,5)∪(5,+∞)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

直線y=kx-k+1與橢圓=1的位置關系是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓=1(a>b>0),點P在橢圓上.
(1)求橢圓的離心率;
(2)設A為橢圓的左頂點,O為坐標原點.若點Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

橢圓=1(a>b>0)的右焦點F,其右準線與x軸的交點為A,在橢圓上存在點P滿足線段AP的垂直平分線過點F,則橢圓離心率的取值范圍是________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知橢圓C1的中心在坐標原點,兩個焦點分別為F1(-2,0),F2(2,0),點A(2,3)在橢圓C1上,過點A的直線L與拋物線C2:x2=4y交于B,C兩點,拋物線C2在點B,C處的切線分別為l1,l2,且l1與l2交于點P.
(1)求橢圓C1的方程;
(2)是否存在滿足|PF1|+|PF2|=|AF1|+|AF2|的點P?若存在,指出這樣的點P有幾個(不必求出點P的坐標);若不存在,說明理由.

查看答案和解析>>

同步練習冊答案