1.若集合{a,b,c,d}={1,2,3,4},且下列四個(gè)關(guān)系:①a=1;②b≠1;③c=2;④d≠4有且只有一個(gè)是正確的,則符合條件的有序數(shù)組(a,b,c,d)的個(gè)數(shù)是 ( 。
A.1種B.6種C.8種D.9種

分析 利用集合的相等關(guān)系,結(jié)合①a=1;②b≠1;③c=2;④d≠4有且只有一個(gè)是正確的,即可得出結(jié)論.

解答 解:由題意,a=2時(shí),b=1,c=4,d=3;b=3,c=1,d=4;
a=3時(shí),b=1,c=4,d=2;b=1,c=2,d=4;b=2,c=1,d=4;
a=4時(shí),b=1,c=3,d=2;
∴符合條件的有序數(shù)組(a,b,c,d)的個(gè)數(shù)是6個(gè).
故選:B.

點(diǎn)評(píng) 本題考查集合的相等關(guān)系,考查分類討論的數(shù)學(xué)思想,正確分類是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=sinxcosx+cos2x-$\frac{1}{2}$.
(1)求f(x)的最小正周期;
(2)求f(x)的單調(diào)遞減區(qū)間;
(3)若函數(shù)f(x)在區(qū)間[0,m]上恰好有10個(gè)零點(diǎn),求正數(shù)m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.圖1是某學(xué)生的數(shù)學(xué)考試成績的莖葉圖,第1次到第14次的考試成績依次記為A1,A2,…,A14,圖2是統(tǒng)計(jì)莖葉圖中成績?cè)谝欢ǚ秶鷥?nèi)考試次數(shù)的一個(gè)程序框圖,那么程序框圖輸出的結(jié)果是( 。
A.14B.9C.10D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知集合M={1,2},N={|m|}.下面甲、乙、丙、丁四位同學(xué)給出四種說法:
甲:若m=1,則N⊆M;乙:若N⊆M,則m=1;
丙:則若m≠1,N?M;。簃=1和N⊆M成立沒有關(guān)系.
你認(rèn)為哪位同學(xué)的說法正確?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l經(jīng)過直線3x+4y-2=0與2x+y+2=0的交點(diǎn)P,且垂直于直線x-3y+1=0
(Ⅰ)求直線l方程;
(Ⅱ)求直線l與兩坐標(biāo)軸圍成的三角形的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.二項(xiàng)式(a-1)8的展開式中,最大的二項(xiàng)式系數(shù)為( 。
A.C${\;}_{8}^{4}$B.-C${\;}_{8}^{4}$C.C${\;}_{9}^{5}$D.-C${\;}_{9}^{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知1<a<2,2<a+b<4,則5a-b的取值范圍是(2,10).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)有拋物線C:y=-x2+$\frac{9}{2}$x-4,過原點(diǎn)O作C的切線y=kx,使切點(diǎn)P在第一象限,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知直線l的傾斜角是直線y=2x+3傾斜角的2倍,則直線l的斜率為$-\frac{4}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案