【題目】為全面貫徹黨的教育方針,堅持立德樹人,適應(yīng)經(jīng)濟社會發(fā)展對多樣化高素質(zhì)人才的需要,按照國家統(tǒng)一部署,湖南省高考改革方案從2018年秋季進入高一年級的學(xué)生開始正式實施.新高考改革中,明確高考考試科目由語文、數(shù)學(xué)、英語科,及考生在思想政治、歷史、地理、物理、化學(xué)、生物個科目中自主選擇的科組成,不分文理科.假設(shè)個自主選擇的科目中每科被選擇的可能性相等,每位學(xué)生選擇每個科目互不影響,甲、乙、丙為某中學(xué)高一年級的名學(xué)生.

(1)求這名學(xué)生都選擇了物理的概率.

(2)設(shè)為這名學(xué)生中選擇物理的人數(shù),求的分布列和數(shù)學(xué)期望.

【答案】(1) (2)分布列見解析,數(shù)學(xué)期望

【解析】

(1)由每位學(xué)生選擇了物理的概率都為,得名學(xué)生都選擇了物理的概率為

(2)的所有可能取值為,由題意服從二項分布,得到的分布列,求得期望

(1)設(shè)“這名學(xué)生都選擇了物理”為事件,依題意得每位學(xué)生選擇了物理的概率都為,

,即這名學(xué)生都選擇了物理的概率為.

(2)的所有可能取值為,由題意

,,

,

所以的分布列為

所以的數(shù)學(xué)期望 .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面上有個點,其中每兩點之間的連線均染成紅色或黑色.若圖中總存在兩個沒有公共邊的同色三角形,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓 ,離心率,短軸,拋物線頂點在原點,以坐標(biāo)軸為對稱軸,焦點為,

(1)求橢圓和拋物線的方程;

(2)設(shè)坐標(biāo)原點為,為拋物線上第一象限內(nèi)的點,為橢圓是一點,且有,當(dāng)線段的中點在軸上時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=x2+ax+3

1)當(dāng)xR時,fxa恒成立,求a的取值范圍.

2)當(dāng)a[4,6]時,fx≥0恒成立,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的兩頂點和垂心.

1)求直線AB的方程;

2)求頂點C的坐標(biāo);

3)求BC邊的中垂線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時,求證:恒成立;

(2)若關(guān)于的方程至少有兩個不相等的實數(shù)根,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市組織高三全體學(xué)生參加計算機操作比賽,等級分為110分,隨機調(diào)閱了A、B兩所學(xué)校各60名學(xué)生的成績,得到樣本數(shù)據(jù)如下:

(1)計算兩校樣本數(shù)據(jù)的均值和方差,并根據(jù)所得數(shù)據(jù)進行比較.

(2)A校樣本數(shù)據(jù)成績分別為7分、8分和9分的學(xué)生中按分層抽樣方法抽取6人,若從抽取的6人中任選2人參加更高一級的比賽,求這2人成績之和大于或等于15的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的前項和為已知,

,則下列結(jié)論正確的是( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】5分)《九章算術(shù)》竹九節(jié)問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第五節(jié)的容積為( )

A. 1B. C. D.

查看答案和解析>>

同步練習(xí)冊答案