18.已知橢圓方程為$\frac{x^2}{16}+\frac{y^2}{9}$=1,則它的兩焦點(diǎn)之間的距離為$2\sqrt{7}$.

分析 利用橢圓方程求出半焦距,即可得到結(jié)果.

解答 解:橢圓方程為$\frac{x^2}{16}+\frac{y^2}{9}$=1,
可得a=4,b=3,
則 c=$\sqrt{{a}^{2}-^{2}}$=$\sqrt{7}$,
兩焦點(diǎn)之間的距離為:2$\sqrt{7}$.
故答案為:2$\sqrt{7}$.

點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知A、B是單位圓(O為圓心)上的兩個(gè)定點(diǎn),且∠AOB=30°,若C為該圓上的動(dòng)點(diǎn),且$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$(x,y∈R),則xy的最大值為2-$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.命題“?x∈R,x2+6ax+1<0”為假命題,則a的取值范圍是$[{-\frac{1}{3},\frac{1}{3}}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列說(shuō)法錯(cuò)誤的是( 。
A.已知a,b,m∈R,命題“若am2<bm2,則a<b”為真命題
B.命題“?x0∈R,x02-x0>0”的否定是“?x∈R,x2-x≤0”
C.命題“p且q”為真命題,則命題p和命題q均為真命題
D.“x>3”是“x>2”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知函數(shù)f(x)=$\frac{{{x^2}-4x+5}}{x-2}$(x>2),當(dāng)且僅當(dāng)x=3時(shí),f(x)取到最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若{1,a,$\frac{a}$}={0,a2,a+b},則a2009+b2009的值為( 。
A.0B.1C.-1D.1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.用更相減損術(shù),求下列兩數(shù)的最大公約數(shù):
(1)225,135;                      
(2)98,280.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.對(duì)數(shù)函數(shù)f(x)=(6m2+m-14)•log2x,則m=(  )
A.$\frac{3}{2}$或-$\frac{5}{3}$B.-$\frac{3}{2}$或$\frac{5}{3}$C.0或1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.“0<a<3”是“雙曲線$\frac{{x}^{2}}{a}$-$\frac{{y}^{2}}{9}$=1(a>0)的離心率大于2”的充要條件.(填寫“充分不必要”、“必要不充分”、“充要”“既不充分也不必要”之一)

查看答案和解析>>

同步練習(xí)冊(cè)答案