7.對數(shù)函數(shù)f(x)=(6m2+m-14)•log2x,則m=(  )
A.$\frac{3}{2}$或-$\frac{5}{3}$B.-$\frac{3}{2}$或$\frac{5}{3}$C.0或1D.1

分析 利用對數(shù)函數(shù)的定義,推出方程求解即可.

解答 解:對數(shù)函數(shù)f(x)=(6m2+m-14)•log2x,
可得6m2+m-14=1,
解得m=$\frac{3}{2}$或$-\frac{5}{3}$.
故選:A.

點評 本題考查對數(shù)函數(shù)的定義的應用,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

17.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽y(顆)2325302616
該農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取3組數(shù)據(jù)求線性回歸方程,剩下的2組數(shù)據(jù)用于回歸方程檢驗.
(1)若選取的是12月1日與12月5日的2組數(shù)據(jù),請根據(jù)12月2日至12月4日的數(shù)據(jù),求出y關于x的線性回歸方程$\stackrel{∧}{y}=\stackrel{∧}x+\stackrel{∧}{a}$;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
(3)請預測溫差為14℃的發(fā)芽數(shù).
其中
$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{{x}^{\;}}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知橢圓方程為$\frac{x^2}{16}+\frac{y^2}{9}$=1,則它的兩焦點之間的距離為$2\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知p:(x+2)(x-6)≤0,q:|x-2|<5,命題“p∨q”為真,“p∧q”為真,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知圓O的圓心為(2,-1),且圓與直線3x+4y-12=0相切,求:
(1)圓O的標準方程.
(2)判斷圓O與直線:x-2y+1=0的位置關系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在下列直線中,與圓x2+y2+4x-2y+4=0相切的直線是( 。
A.x=0B.y=0C.x+y=0D.x-y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已經(jīng)集合M={x|1<x<4},N={x|x=2a+1,a∈M},則集合M∪N={x|1<x<9}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.存在函數(shù)f(x)滿足:對于任意x∈R都有( 。
A.f(sin2x)=sinxB.f(x2+2x)=|x+1|C.f(sin2x)=x2+xD.f(x2+1)=|x+1|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設銳角△ABC的三個內(nèi)角A,B,C所對的邊分別為a,b,c,且b=3,c=1,△ABC的面積為$\sqrt{2}$,則a的值為(  )
A.2$\sqrt{2}$或2$\sqrt{3}$B.2$\sqrt{2}$C.2$\sqrt{3}$D.2$\sqrt{6}$

查看答案和解析>>

同步練習冊答案