3.在等差數(shù)列{an}中,a16+a17+a18=a9=-36,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式,以及前n項(xiàng)和為Sn
(2)求Sn的最小值,并求出Sn取最小值時(shí)n的值;.

分析 (1)利用等差數(shù)列的通項(xiàng)公式即可得出.
(2)利用等差數(shù)列的求和公式、二次函數(shù)的單調(diào)性即可得出.

解答 解:(1)設(shè)等差數(shù)列{an}的公差為d,∵a16+a17+a18=a9=-36,
∴3a17=3(a1+16d)=-36,a1+8d=-36,
解得a1=-60,d=3.
∴an=-60+3(n-1)=3n-63.
(2)Sn=-60×n+$\frac{n(n-1)}{2}×3$
=$\frac{3}{2}$$[(n-\frac{41}{2})^{2}-\frac{1681}{4}]$,
當(dāng)n=20或21時(shí),Sn取得最小值=-630.

點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式與求和公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)a=30.5,b=0.53,c=log0.53,則a、b、c的大小關(guān)系( 。
A.a<b<cB.c<b<aC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知函數(shù)f(x)滿足f(x+2)=-$\frac{1}{f(x)}$,且對(duì)一切x∈R都成立,當(dāng)x∈(1,3]時(shí),f(x)=2-x,則f(2015)=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在極坐標(biāo)系中,兩點(diǎn)A,B的極坐標(biāo)分別為A(1,$\frac{π}{6}$),B(2,-$\frac{π}{2}$),則A,B兩點(diǎn)間的距離等于$\sqrt{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.關(guān)于數(shù)列有下面四個(gè)判斷:
①若a,b,c,d成等比數(shù)列,則a+b,b+c,c+d也成等比數(shù)列;
②若數(shù)列{an}既是等差數(shù)列,也是等比數(shù)列,則{an}為常數(shù)列;
③若數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=an-1(a∈R),則{an}為等差或等比數(shù)列;
④數(shù)列{an}為等差數(shù)列,且公差不為零,則數(shù)列{an}中不含有am=an(m≠n).
其中正確判斷序號(hào)是②④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,tanA=$\frac{1}{2}$,tanB=$\frac{1}{3}$,c=$\sqrt{5}$,則△ABC的面積為(  )
A.$\frac{1}{2}$B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.(1)化簡(jiǎn):[2sin50°+sin10°(1+$\sqrt{3}$tan10°)]$\sqrt{1+cos{20°}}$
(2)求證:$\frac{tan5α+tan3α}{cos2αcos4α}$=4(tan5α-tan3α).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知△ABC中,角A,B,C所對(duì)的邊分別為a,b,c且2acos2C+2ccosAcosC+b=0.
(1)求角C的大;
(2)若b=4sinB,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知點(diǎn)A(12,6),動(dòng)點(diǎn)P在拋物線x2=4y上,則P點(diǎn)到A的距離與P到x的距離之和的最小值為12.

查看答案和解析>>

同步練習(xí)冊(cè)答案