已知圓C:x2+y2-4x+6y+9=0,點(diǎn)A(-1,1).
(1)過(guò)點(diǎn)A作圓C的切線,求切線的長(zhǎng);
(2)以點(diǎn)A為圓心的圓與圓C外切,求圓A的方程及這兩個(gè)圓公切線的長(zhǎng).
考點(diǎn):圓的切線方程
專題:計(jì)算題,直線與圓
分析:(1)利用線段AC,半徑,切線組成以線段AC為斜邊的直角三角形,即可求切線的長(zhǎng);
(2)利用公切線,兩圓的半徑,線段AC組成以公切線為腰的直角梯形,可得結(jié)論.
解答: 解:(1)圓C的圓心為C(2,-3),半徑為r=2…(2分)
|AC|=
32+42
=5
…(3分)
∵線段AC,半徑,切線組成以線段AC為斜邊的直角三角形
∴所求切線的長(zhǎng)為
52-22
=
21
…(5分)
(2)∵圓A與圓C外切,∴圓A的半徑為R=5-2=3 …(7分)
∴圓A的方程為(x+1)2+(y-1)2=9…(9分)
∵公切線,兩圓的半徑,線段AC組成以公切線為腰的直角梯形
∴公切線長(zhǎng)為
|AC|2-(R-r)2
=2
6
…(12分)
點(diǎn)評(píng):本題考查圓的切線方程,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)空間中點(diǎn)P的柱坐標(biāo)為(2,
π
6
,1)
,則點(diǎn)P的直角坐標(biāo)為(1,
3
,1)
;
(2)若曲線
x2
4+k
+
y2
1-k
=1表示雙曲線,則k的取值范圍是(1,+∞)∪(-∞,-4);
(3)已知A(-5,0),B(5,0),直線AM,BM相交于點(diǎn)M,且它們的斜率之積為-
4
9
,則點(diǎn)M的軌跡方程為
x2
25
+
9y2
100
=1;
(4)已知雙曲線方程為x2-
y2
2
=1,則過(guò)點(diǎn)P(1,1)可以作一條直線l與雙曲線交于A,B兩點(diǎn),使點(diǎn)P是線段AB的中點(diǎn).
其中正確命題的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a1
=2
m
-
j
+
k
,
a2
=
m
+3
j
-2
k
,
a3
=-2
m
+
j
-3
k
,
a4
=3
m
+2
j
+5
k
,(其中
m
,
j
,
k
是兩兩垂直的單位向量),若
a4
a1
a2
a3
,則實(shí)數(shù)λ,μ,ν的值分別是( 。
A、1,-2,-3
B、-2,1,-3
C、-2,1,3
D、-1,2,3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式an=
1
n
+
n+1
,則該數(shù)列的前99項(xiàng)之和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x||x+2|+|x-1|≤5},N={x|a<x<6},且M∩N=(-1,b],則b-a=( 。
A、-3B、3C、C-1D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,直線x-
3
y+2
3
=0被圓x2+y2=4截得的弦長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2sin(2x-
π
6
)
的圖象中,離坐標(biāo)原點(diǎn)最近的一條對(duì)稱軸的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式x+
2
x+1
≥2的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖流程圖輸出的結(jié)果是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案