10.要得到函數(shù)y=sin2x的圖象,只需將函數(shù)y=cos2x的圖象上的所有點沿x軸( 。
A.向右平移$\frac{π}{4}$個單位長度B.向右平移$\frac{π}{2}$個單位長度
C.向左平移$\frac{π}{4}$個單位長度D.向左平移$\frac{π}{2}$個單位長度

分析 利用誘導(dǎo)公式,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,得出結(jié)論.

解答 解:只需將函數(shù)y=cos2x=sin(2x+$\frac{π}{2}$)的圖象上的所有點沿x軸向右平移$\frac{π}{4}$個單位長度,
可得函數(shù)y=sin2x的圖象,
故選:A.

點評 本題主要考查誘導(dǎo)公式的應(yīng)用,函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,統(tǒng)一這兩個三角函數(shù)的名稱,是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.為了弘揚民族文化,某校舉行了“我愛國學(xué),傳誦經(jīng)典”考試,并從圖中隨機抽取了100名考生的成績(得分均為整數(shù),滿分100分)進(jìn)行統(tǒng)計制表,其中成績不低于80分的考生被評為優(yōu)秀生,請根據(jù)頻率分布表中所提供的數(shù)據(jù),用頻率估計概率,回答下列問題.
分組頻數(shù)頻率
[50,60)50.05
[60,70)a0.20
[70,80)35b
[80,90)250.25
[90,100)150.15
合計1001.00
(1)求a,b的值并估計這100名考生成績的平均分;
(2)按頻率分布表中的成績分組,采用分層抽樣抽取20人參加學(xué)校的“我愛國學(xué)”宣傳活動,求其中優(yōu)秀生的人數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖1是四棱錐的直觀圖,其正(主)視圖和側(cè)(左)視圖均為直角三角形,俯視圖外框為矩形,相關(guān)數(shù)據(jù)如圖2所示.

(1)設(shè)AB中點為O,在直線PC上找一點E,使得OE∥平面PAD,并說明理由;
(2)若直線PB與底面ABCD所成角的正切值為$\frac{{2\sqrt{5}}}{5}$,求四棱錐P-ABCD的外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知a=${∫}_{0}^{1}$$\sqrt{x}$dx,b=${∫}_{0}^{1}$xdx,c=${∫}_{0}^{1}$x2dx,則a,b,c的大小關(guān)系是( 。
A.c<b<aB.a<c<bC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=ax-lnx;g(x)=$\frac{lnx}{x}$.
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時,f(x)≥e-g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時,對于?x1∈[1,e],?x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+{cos^2}x+\frac{3}{2}$.
(1)當(dāng)$x∈[{-\frac{π}{6},\frac{π}{3}}]$時,討論函數(shù)y=f(x)的單調(diào)性;
(2)已知ω>0,函數(shù)$g(x)=f(\frac{ωx}{2}-\frac{π}{12})$,若函數(shù)g(x)在區(qū)間$[{-\frac{2π}{3},\frac{π}{6}}]$上是增函數(shù),求ω的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若直線l1:x-2y+1=0與直線l2:x+ay-1=0平行,則l1與l2的距離為( 。
A.$\frac{\sqrt{5}}{5}$B.$\frac{2\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,△AOB為等腰直角三角形,OA=l,OC為斜邊AB的髙,點P在射線OC 上,則$\overrightarrow{AP}$•$\overrightarrow{OP}$的最小值為( 。
A.-1B.-$\frac{1}{4}$C.-$\frac{1}{8}$D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在三棱柱ABC-A1B1C1中,AB⊥BC,頂點A1在底面ABC內(nèi)的射影恰好是AB的中點O,且AB=BC=2.OA1=2,
(1)求證:平面ABB1A1⊥平面BCC1B1;
(2)求直線A1C與平面ABC所成的角的余弦值.

查看答案和解析>>

同步練習(xí)冊答案