2.如圖,AB為圓O的直徑,E為AB的延長線上一點,過E作圓O的切線,切點為C,過A作直線EC的垂線,垂足為D.若AB=4,CE=2$\sqrt{3}$,則AD=( 。
A.3B.6C.2D.4

分析 連接OC,則OC⊥DE,可得$\frac{OC}{AD}=\frac{OE}{AE}$,由切割線定理可得CE2=BE•AE,求出BE,即可得出結(jié)論.

解答 解:連接OC,則OC⊥DE,
∵AD⊥DE,
∴AD∥OC,
∴$\frac{OC}{AD}=\frac{OE}{AE}$.
由切割線定理可得CE2=BE•AE,
∴12=BE•(BE+4),
∴BE=2,
∴OE=4,
∴$\frac{2}{AD}=\frac{4}{6}$,
∴AD=3
故選:A.

點評 本題考查切割線定理,考查學(xué)生分析解決問題的能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,四棱錐P-ABCD中,PA⊥平面ABCD,PA=$\sqrt{6}$,四邊形ABCD是邊長為2的菱形,∠ABC=60°,M,N分別為BC和PB的中點..
(Ⅰ)證明:平面PBC⊥平面PMA;
(Ⅱ)求二面角N-AD-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)y=sinωx(ω>0)在一個周期內(nèi)的圖象如圖所示,則ω的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A,B,C所對的邊分別為a,b,c.已知$\overrightarrow m=({sinC,{b^2}-{a^2}-{c^2}}),\overrightarrow n=({2sinA-sinC,{c^2}-{a^2}-{b^2}})$且$\overrightarrow m∥\overrightarrow n$;
(Ⅰ)求角B的大小;
(Ⅱ)設(shè)T=sin2A+sin2B+sin2C,求T的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=x3+3ax2+3bx在x=2處有極值,其圖象在x=1處的切線平行于直線6x+2y+5=0,則f(x)的極大值與極小值之差為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在等差數(shù)列{an}中,Sn為它的前n項和,且S4=2,S8=6,則S12=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.下列語句是求S=2+3+4+…+99的一個程序,請回答問題:

(1)語句中是否有錯誤?請加以改正;
(2)把程序改成另一種類型的循環(huán)語句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.2015年,一列CRH5型高速車組進行300000千米直線運營考核,標志中國高鐵車從“中國制造”到“中國創(chuàng)新”的飛躍,將300000用科學(xué)記數(shù)法表示為( 。
A.3×106B.3×105C.0.3×106D.30×104

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在邊長為2的正三角形ABC內(nèi)任取一點P,則使點P到三個頂點的距離都不小于1的概率是$1-\frac{{\sqrt{3}π}}{6}$.

查看答案和解析>>

同步練習(xí)冊答案