在棱長(zhǎng)為1的正方體AC1中,E為AB的中點(diǎn),點(diǎn)P為側(cè)面BB1C1C內(nèi)一動(dòng)點(diǎn)(含邊界),若動(dòng)點(diǎn)P始終滿足PE⊥BD1,則動(dòng)點(diǎn)P的軌跡的長(zhǎng)度為( )

A. B. C. D.

 

B

【解析】如圖,

根據(jù)題意,BD1要始終垂直于PE所在的一個(gè)平面,取BC,BB1的中點(diǎn)F,G,易證BD1⊥平面EFG,故點(diǎn)P的軌跡為線段FG,易求得這條線段的長(zhǎng)度是.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第二章 函數(shù)、導(dǎo)數(shù)及其應(yīng)用(解析版) 題型:解答題

(2014·孝感模擬)已知定義在區(qū)間[0,2]上的兩個(gè)函數(shù)f(x)和g(x),其中f(x)=-x2+2ax+1+a2,g(x)=x-+.

(1)求函數(shù)f(x)的最小值.

(2)對(duì)于?x1,x2∈[0,2],f(x1)>g(x2)恒成立,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第三章 三角函數(shù)、解三角形(解析版) 題型:填空題

在△ABC中,2sin2=sinA,sin(B-C)=2cosBsinC,則=____________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:解答題

已知等腰梯形PDCB中(如圖),PB=3,DC=1,PD=BC=,A為PB邊上一點(diǎn),且PA=1,將△PAD沿AD折起,使平面PAD⊥平面ABCD(如圖).

(1)證明:平面PAD⊥平面PCD.

(2)試在棱PB上確定一點(diǎn)M,使截面AMC把幾何體分成的兩部分VPDCMA∶VMACB=2∶1.

(3)在M滿足(2)的情況下,判斷直線PD是否平行平面AMC.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:填空題

如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:

①直線BE與直線CF異面;

②直線BE與直線AF異面;

③直線EF∥平面PBC;

④平面BCE⊥平面PAD.

其中正確的有__________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第七章 立體幾何(解析版) 題型:選擇題

(2014·宜昌模擬)一個(gè)直棱柱被一個(gè)平面截去一部分后所剩幾何體的三視圖如圖所示,則該幾何體的體積為( )

A.9 B.10 C.11 D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:解答題

已知函數(shù)f(x)=ax3+(a-2)x+c的圖象如圖所示.

(1)求函數(shù)y=f(x)的解析式;

(2)若g(x)=-2ln x在其定義域內(nèi)為增函數(shù),求實(shí)數(shù)k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題

“φ=π”是“曲線y=sin(2x+φ)過坐標(biāo)原點(diǎn)”的( )

A.充分而不必要條件

B.必要而不充分條件

C.充分必要條件

D.既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題

已知等比數(shù)列{an},若存在兩項(xiàng)am,an使得am·an=a32,則的最小值為(  )

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案