如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:
①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的有__________.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第五章 數(shù)列(解析版) 題型:選擇題
“點(diǎn)Pn(n,an)(n∈N*)都在直線y=x+1上”是“數(shù)列{an}為等差數(shù)列”的( )
A.充分不必要條件
B.必要不充分條件
C.充要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:解答題
(2013·重慶高考)在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且a2=b2+c2+ab.
(1)求A.
(2)設(shè)a=,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時(shí)B的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第三章 三角函數(shù)、解三角形(解析版) 題型:選擇題
已知函數(shù)y=cos(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示,則( )
A.ω=1,φ=
B.ω=1,φ=-
C.ω=2,φ=
D.ω=2,φ=-
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第七章 立體幾何(解析版) 題型:解答題
如圖,AB=AD,∠BAD=90°,M,N,G分別是BD,BC,AB的中點(diǎn),將等邊△BCD沿BD折疊到△BC′D的位置,使得AD⊥C′B.
(1)求證:平面GNM∥平面ADC′.
(2)求證:C′A⊥平面ABD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第七章 立體幾何(解析版) 題型:選擇題
在棱長為1的正方體AC1中,E為AB的中點(diǎn),點(diǎn)P為側(cè)面BB1C1C內(nèi)一動(dòng)點(diǎn)(含邊界),若動(dòng)點(diǎn)P始終滿足PE⊥BD1,則動(dòng)點(diǎn)P的軌跡的長度為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測 第七章 立體幾何(解析版) 題型:選擇題
(2014·泰安模擬)設(shè)a是空間中的一條直線,α是空間中的一個(gè)平面,則下列說法正確的是( )
A.過a一定存在平面β,使得β∥α
B.過a一定存在平面β,使得β⊥α
C.在平面α內(nèi)一定不存在直線b,使得a⊥b
D.在平面α內(nèi)一定不存在直線b,使得a∥b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 集合、常用邏輯用語、不等式、函數(shù)與導(dǎo)數(shù)(解析版) 題型:選擇題
函數(shù)y=xcos x+sin x的圖象大致為( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
已知平面α⊥平面β,α∩β=l,點(diǎn)A∈α,A∉l,直線AB∥l,直線AC⊥l,直線m∥α,m∥β,則下列四種位置關(guān)系中,不一定成立的是( )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com