【題目】已知,橢圓的離心率為, 是橢圓的右焦點, 的斜率為, 為坐標(biāo)原點.

(1)求橢圓的方程;

(2)設(shè)過點的動直線交于, 兩點,當(dāng)面積最大時,求的方程.

【答案】(;(

【解析】試題分析:(1)通過直線的斜率求得,通過離心率即可求得,故得到的方程;(2)設(shè)出直線的方程和點的坐標(biāo),聯(lián)立直線與橢圓方程,當(dāng)判別式大于時,根據(jù)韋達(dá)定理得根與系數(shù)的關(guān)系得到的長.根據(jù)點到直線距離公式代入三角形面積中,得到其關(guān)于的表達(dá)式,根據(jù)換元法和基本不等式即可得到當(dāng)面積取得最大值時的值,即求得的方程.

試題解析:(1)設(shè)右焦點,由條件知,,得

,所以,故橢圓的方程為

2)當(dāng)軸時不合題意,故設(shè)直線,

代入,得,

當(dāng),即時,,

從而

又點到直線的距離,

所以的面積,設(shè),則

因為,當(dāng)且僅當(dāng)時,時取等號,且滿足

所以當(dāng)的面積最大時,的方程為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線在點處的切線與直線垂直(其中為自然對數(shù)的底數(shù)).

1)求的解析式及單調(diào)遞減區(qū)間;

2)是否存在常數(shù),使得對于定義域內(nèi)的任意, 恒成立,若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù),

1求曲線處的切線方程;

2討論函數(shù)的極小值;

3若對任意的,總存在,使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱柱的底面是邊長為2的菱形,且,⊥平面,設(shè)的中點

(1)求證:⊥平面

(2)點在線段,平面求平面和平面所成銳角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形ABCD為正方形, 為直角三角形, ,且.

1)證明:平面平面;

2)若AB=2AE,求異面直線BEAC所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè), .

(1)若,證明: 時, 成立;

(2)討論函數(shù)的單調(diào)性;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知|a|=4,|b|=3,(2a-3b)·(2ab)=61,

(1)求ab的夾角θ; (2)求|ab|;

(3)若a, b,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)樣本x1,x2,…,x10數(shù)據(jù)的平均值和方差分別為3和5,若yi=xi+a(a為非零實數(shù),i=1,2,…,10),則y1,y2,…,y10的均值和方差分別為( )

A. 3,5 B. 3+a,5 C. 3+a,5+a D. 3,5+a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1存在,使得的最大值,求取值范圍;

2任意成立時,的最大值為1,取值范圍.

查看答案和解析>>

同步練習(xí)冊答案