【題目】設樣本x1,x2,…,x10數(shù)據(jù)的平均值和方差分別為3和5,若yi=xi+a(a為非零實數(shù),i=1,2,…,10),則y1,y2,…,y10的均值和方差分別為( )

A. 3,5 B. 3+a,5 C. 3+a,5+a D. 3,5+a

【答案】B

【解析】根據(jù)題意,樣本x1,x2,…,x10數(shù)據(jù)的平均值和方差分別為3和5,

則有= (x1+x2+…+x10)=3,

S2x= [(x1-3)2+(x2-3)2+…+(x10-3)2]=5,

對于yi=xi+a;

則有= (x1+a+x2+a+…+x10+a)=(x1+x2+…+x10+10a)=3+a

S2y= [(y1-3-a)2+(y2-3-a)2+…+(y10-3-a)2]=5,

本題選擇B選項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】 某山區(qū)外圍有兩條相互垂直的直線型公路,為進一步改善山區(qū)的交通現(xiàn)狀,計劃修建一條連接兩條公路的山區(qū)邊界的直線型公路,記兩條相互垂直的公路為,山區(qū)邊界曲線為,計劃修建的公路為,如圖所示,的兩個端點,測得點的距離分別為5千米40千米,點的距離分別為20千米2.5千米,以所在的直線分別為軸,建立平面直角坐標系,假設曲線符合函數(shù)其中為常數(shù)模型

(1)的值;

(2)設公路與曲線相切于點,的橫坐標為.

請寫出公路長度的函數(shù)解析式,并寫出其定義域;

為何值時,公路的長度最短?求出最短長度

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,橢圓的離心率為, 是橢圓的右焦點, 的斜率為, 為坐標原點.

(1)求橢圓的方程;

(2)設過點的動直線交于, 兩點,當面積最大時,求的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:極坐標與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)).

1)求曲線的普通方程;

2)經過點(平面直角坐標系中點)作直線交曲線, 兩點,若恰好為線段的三等分點,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=sin(2x+φ)(-π<φ<0),y=f(x)圖象的一條對稱軸是直線

(1)求φ;

(2)求函數(shù)y=f(x)的單調遞增區(qū)間;

(3)求函數(shù)y=f(x)在區(qū)間上的值域。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個關于數(shù)列命題:

(1)若是等差數(shù)列,則三點共線;

(2)若是等比數(shù)列,則、 ()也是等比數(shù)列;

3等比數(shù)列的前n項和為,若對任意的,點均在函數(shù) (, 均為常數(shù))的圖象上,則r的值為.

4對于數(shù)列,定義數(shù)列為數(shù)列的“差數(shù)列”,若, 的“差數(shù)列”的通項為,則數(shù)列的前項和

其中正確命題的個數(shù)是 ( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《中國好聲音()》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012713日在浙江衛(wèi)視播出.每期節(jié)目有四位導師參加.導師背對歌手,當每位參賽選手演唱完之前有導師為其轉身,則該選手可以選擇加入為其轉身的導師的團隊中接受指導訓練.已知某期《中國好聲音》中,6位選手唱完后,四位導師為其轉身的情況如下表所示:

導師轉身人數(shù)(人)

4

3

2

1

獲得相應導師轉身的選手人數(shù)(人)

1

2

2

1

現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導師的轉身情況.

1)請列出所有的基本事件;

2)求兩人中恰好其中一位為其轉身的導師不少于3人,而另一人為其轉身的導師不多于2人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,函數(shù)

1求證:曲線在點處的切線過定點;

2在區(qū)間上的極大值,但不是最大值,求實數(shù)的取值范圍;

3求證:對任意給定的正數(shù) ,總存在,使得上為單調函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1的單調區(qū)間;

2的最大值是,求的值;

3,當時,若對任意,總有成立,試求的最大值.

查看答案和解析>>

同步練習冊答案