【題目】設(shè)函數(shù),曲線y=f(x)在點(diǎn)(1, f(1))處的切線方程為y=e(x-1)+2.

(1)求 (2)證明:

【答案】I;(II)詳見解析.

【解析】試題分析:(1)根據(jù)求導(dǎo)法則求出原函數(shù)的導(dǎo)函數(shù),由某點(diǎn)的導(dǎo)數(shù)是在該點(diǎn)的切線的斜率,結(jié)合切線方程以及該點(diǎn)的函數(shù)值,將函數(shù)值和切線斜率代入原函數(shù)和導(dǎo)函數(shù)可求得參數(shù)值;(2)由(1 )可得的解析式, 為多項(xiàng)式,對(duì)要證的不等式進(jìn)行變形,使之成為兩個(gè)函數(shù)的大小關(guān)系式,再分別利用導(dǎo)函數(shù)求出兩函數(shù)在定義域內(nèi)的最值,可證得兩函數(shù)的大小關(guān)系,進(jìn)而證得.

試題解析:(1)函數(shù)的定義域?yàn)?/span>

.

由題意可得, ..

2)證明:由(1)知, ,

從而等價(jià)于.

設(shè)函數(shù),則.

所以當(dāng);

當(dāng)時(shí), .

上單調(diào)遞減, 上單調(diào)遞增,從而上的最小值為.

設(shè)函數(shù),則.

所以當(dāng)時(shí), ;當(dāng)時(shí), .上單調(diào)遞增,在上單調(diào)遞減,從而上的最大值為.

綜上,當(dāng)時(shí), ,即.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是塊矩形硬紙板,其中AB=2AD,AD=,E為DC的中點(diǎn),將它沿AE折成直二面角D-AE-B

1求證:AD平面BDE;

2求二面角B-AD-E的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對(duì)高一年級(jí)學(xué)生寒假參加社區(qū)服務(wù)的次數(shù)進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生作為樣本,得到這名學(xué)生參加社區(qū)服務(wù)的次數(shù),根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方圖如下:

(1)求表中的值和頻率分布直方圖中的值,并根據(jù)頻率分布直方圖估計(jì)該校高一學(xué)生寒假參加社區(qū)服務(wù)次數(shù)的中位數(shù);

(2)如果用分層抽樣的方法從樣本服務(wù)次數(shù)在的人中共抽取6人,再從這6人中選2人,求2人服務(wù)次數(shù)都在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A(4, 0),B2, 2),C (6, 0),記ABC的外接圓為P

1P的方程.

(2)對(duì)于線段PA上的任意一點(diǎn)G,是否存在以B為圓心的圓,在圓B上總能找到不同的兩點(diǎn)E、F,滿足=,若存在,求圓B的半徑的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,他們分別記錄了3月1日至3月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),作了初步處理,得到下表:

日期

3月1日

3月2日

3月3日

3月4日

3月5日

溫差

10

11

13

12

9

發(fā)芽率(顆)

23

25

30

26

16

(1)從3月1日至3月5日中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均小于26”的概率;

(2)請(qǐng)根據(jù)3月1日至3月5日的數(shù)據(jù),求出關(guān)于的線性回歸方程,并預(yù)報(bào)3月份晝夜溫差為14度時(shí)實(shí)驗(yàn)室每天100顆種子浸泡后的發(fā)芽(取整數(shù)值).

附:回歸方程中的斜率和截距最小二乘法估計(jì)公式分別為:,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=(m2-5m+1)xm+1為冪函數(shù),且為奇函數(shù).

(I)求m的值;

(II)求函數(shù)g(x)=h(x)+,x的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是直角梯形,,又平面,且,點(diǎn)在棱上,且

(1)求異面直線所成的角的大。

(2)求證:平面;

(3)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某廠有容量300噸的水塔一個(gè),每天從早六點(diǎn)到晚十點(diǎn)供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時(shí)10噸,工業(yè)用水總量與時(shí)間單位:小時(shí),規(guī)定早晨六點(diǎn)時(shí)的函數(shù)關(guān)系為,水塔的進(jìn)水量有10級(jí),第一級(jí)每小時(shí)進(jìn)水10噸,以后每提高一級(jí), 進(jìn)水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時(shí)打開進(jìn)水管.問該天進(jìn)水量應(yīng)選擇幾級(jí),既能保證該廠用水即水塔中水不空,又不會(huì)使水溢出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共13分)根據(jù)以往的成績(jī)記錄,甲、乙兩名隊(duì)員射擊擊中目標(biāo)靶的環(huán)數(shù)的頻率分布情況如圖所示

1)求上圖中的值;

2)甲隊(duì)員進(jìn)行一次射擊,求命中環(huán)數(shù)大于7環(huán)的概率(頻率當(dāng)作概率使用);

3)由上圖判斷甲、乙兩名隊(duì)員中,哪一名隊(duì)員的射擊成績(jī)更穩(wěn)定(結(jié)論不需證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案