1.已知y=f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)<f(2a-1),則a的取值范圍是( 。
A.$a<\frac{2}{3}$B.a>0C.$0<a<\frac{2}{3}$D.a<0或$a>\frac{2}{3}$

分析 根據(jù)f(1-a)<f(2a-1),嚴(yán)格應(yīng)用函數(shù)的單調(diào)性,要注意定義域.

解答 解:∵f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)<f(2a-1)
∴$\left\{\begin{array}{l}{-1<1-a<1}\\{-1<2a-1<1}\\{1-a>2a-1}\end{array}\right.$,∴0<a<$\frac{2}{3}$,
故選:C.

點(diǎn)評(píng) 本題主要考查應(yīng)用單調(diào)性解題,一定要注意變量的取值范圍.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若cos θ=-$\frac{3}{5}$,且180°<θ<270°,則tan $\frac{θ}{2}$的值為( 。
A.2B.-2C.±2D.±$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,矩形ABCD中,AB=1,BC=$\sqrt{3}$,將△ABD沿對(duì)角線BD向上翻折,若翻折過程中AC長(zhǎng)度在[$\frac{\sqrt{10}}{2}$,$\frac{\sqrt{13}}{2}$]內(nèi)變化,則點(diǎn)A所形成的運(yùn)動(dòng)軌跡的長(zhǎng)度為$\frac{\sqrt{3}π}{12}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖程序輸出的結(jié)果是2500.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)y=x2+bx-4在(-∞,-1]上是減函數(shù),在[-1,+∞)上是增函數(shù),則( 。
A.b<0B.b>0C.b=0D.b的符號(hào)不定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)a=log54,b=log53,c=log45,則( 。
A.a<c<bB.b<c<aC.a<b<cD.b<a<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓C與雙曲線y2-x2=1有共同焦點(diǎn),且離心率為$\frac{\sqrt{6}}{3}$.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若A為橢圓C的下頂點(diǎn),M、N為橢圓C上異于A的兩點(diǎn),直線AM與AN的斜率之積為1.
(i)求證:直線MN恒過定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(ii)若O為坐標(biāo)原點(diǎn),求$\overrightarrow{OM}$•$\overrightarrow{ON}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=(5x-3)3的導(dǎo)數(shù)是(  )
A.y'=3(5x-3)2B.y'=15(5x-3)2C.y'=9(5x-3)2D.y'=12(5x-3)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)三條不同的直線l1,l2,l3滿足l1⊥l3,l2⊥l3,則l1與l2( 。
A.是異面直線B.是相交直線
C.是平行直線D.可能相交,或相交,或異面直線

查看答案和解析>>

同步練習(xí)冊(cè)答案