【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若f(log2a)+f(2log a)≥2f(﹣1),則實(shí)數(shù)a的取值范圍是

【答案】[ ,2]
【解析】解:函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,故f(x)在(﹣∞,0]上單調(diào)遞增.
若f(log2a)+f(2log a)≥2f(﹣1),
即f(log2a)+f(log a2)≥2f(﹣1),即f(log2a)+f( a)≥2f(﹣1),
即f(log2a)+f(﹣log2a)≥2f(﹣1),即f(log2a)+f(log2a)≥2f(﹣1),
即f(log2a)≥f(﹣1)=f(1),﹣1≤log2a≤1,∴ ≤a≤2,
所以答案是:
【考點(diǎn)精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握奇函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間上有相反的單調(diào)性.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)=ax2+2x﹣2a,若方程f(x)=0有相異的兩根x1 , x2
(1)若a>0,且x1<1<x2 , 求a的取值范圍;
(2)若x1﹣1,x2﹣1同號(hào),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),(其中, 為自然對(duì)數(shù)的底數(shù))

(Ⅰ)求函數(shù)的極值;

(Ⅱ)當(dāng)時(shí),若直線(xiàn)與曲線(xiàn)沒(méi)有公共點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=2x的定義域是[0,3],設(shè)g(x)=f(2x)﹣f(x+2).
(1)求g(x)的解析式及定義域;
(2)求函數(shù)g(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)任意實(shí)數(shù)a,b定義運(yùn)算“⊙”:a⊙b= 設(shè)f(x)=2x+1⊙(1﹣x),若函數(shù)f(x)與函數(shù)g(x)=x2﹣6x在區(qū)間(m,m+1)上均為減函數(shù),且m∈{﹣1,0,1,3},則m的值為(
A.0
B.﹣1或0
C.0或1
D.0或1或3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若橢圓的對(duì)稱(chēng)軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為18,焦距為6,則橢圓的方程為(
A.
B.
C.
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017湖南長(zhǎng)沙二!磕撤N產(chǎn)品的質(zhì)量以其質(zhì)量指標(biāo)值衡量,并依據(jù)質(zhì)量指標(biāo)值劃分等極如下表:

質(zhì)量指標(biāo)值

等級(jí)

三等品

二等品

一等品

從某企業(yè)生產(chǎn)的這種產(chǎn)品中抽取200件,檢測(cè)后得到如下的頻率分布直方圖:

1根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“一、二等品至少要占全部產(chǎn)品90%”的規(guī)定?

2在樣本中,按產(chǎn)品等極用分層抽樣的方法抽取8件,再?gòu)倪@8件產(chǎn)品中隨機(jī)抽取4件,求抽取的4件產(chǎn)品中,一、二、三等品都有的概率;

3該企業(yè)為提高產(chǎn)品質(zhì)量,開(kāi)展了“質(zhì)量提升月”活動(dòng),活動(dòng)后再抽樣檢測(cè),產(chǎn)品質(zhì)量指標(biāo)值近似滿(mǎn)足,則“質(zhì)量提升月”活動(dòng)后的質(zhì)量指標(biāo)值的均值比活動(dòng)前大約提升了多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,程序框圖的輸出結(jié)果為﹣18,那么判斷框①表示的“條件”應(yīng)該是(

A.i>10?
B.i>9?
C.i>8?
D.i>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【2017南通二模19】已知函數(shù),,其中e為自然對(duì)數(shù)的底數(shù).

(1)求函數(shù)在x1處的切線(xiàn)方程;

(2)若存在,使得成立,其中為常數(shù),

求證:;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案