【題目】若橢圓的對稱軸為坐標軸,長軸長與短軸長的和為18,焦距為6,則橢圓的方程為(
A.
B.
C.
D.以上都不對

【答案】C
【解析】解:設橢圓的長半軸與短半軸分別為a和b,
則2(a+b)=18,即a+b=9①,
由焦距為6,得到c=3,則a2﹣b2=c2=9②,
由①得到a=9﹣b③,把③代入②得:
(9﹣b)2﹣b2=9,化簡得:81﹣18b=9,解得b=4,把b=4代入①,解得a=5,
所以橢圓的方程為:
故選C.
設出橢圓的長半軸與短半軸分別為a和b,根據(jù)長軸與短軸的和為18列出關(guān)于a與b的方程記作①,由焦距等于6求出c的值,根據(jù)橢圓的基本性質(zhì)a2﹣b2=c2 , 把c的值代入即可得到關(guān)于a與b的另一關(guān)系式記作②,將①②聯(lián)立即可求出a和b的值,然后利用a與b的值寫出橢圓的方程即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的方程為 =1,其左右焦點分別為F1 , F2 , 過其左焦點且斜率為1的直線與該橢圓相交與A,B兩點,則 =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】移動公司在春節(jié)正月初八這天推出4G套餐,對這天辦理套餐的客戶進行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元. 初八當天參與活動的人數(shù)統(tǒng)計結(jié)果如圖所示,

(Ⅰ)從參加當天活動的人中任選一人,求此人獲得優(yōu)惠金額不低于300元的概率(將頻率視為概率);

(Ⅱ)若采用分層抽樣的方式從參加活動的客戶中選出6人,再從該6人中隨機選兩人,求這兩人獲得相等優(yōu)惠金額的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某生產(chǎn)甲,乙兩種產(chǎn)品,生產(chǎn)這兩種產(chǎn)品每噸需要的煤,電以及每噸產(chǎn)品的產(chǎn)值如表所示.若每天配給該廠的煤至多56噸,供電至多45千瓦,問該廠如何安排生產(chǎn),使該廠日產(chǎn)值最大?

用煤/噸

用電/千瓦

產(chǎn)值/萬元

甲種產(chǎn)品

7

2

8

乙種產(chǎn)品

3

5

11

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且在區(qū)間[0,+∞)上單調(diào)遞減,若f(log2a)+f(2log a)≥2f(﹣1),則實數(shù)a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=2x+2x
(1)用定義法證明:函數(shù)f(x)是區(qū)間(0,+∞)上的增函數(shù);
(2)若x∈[﹣1,2],求函數(shù)g(x)=2x[f(x)﹣2]﹣3的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若函數(shù)f(x)= 是奇函數(shù),則使f(x)>3成立的x的取值范圍為(
A.(﹣∞,﹣1)
B.(﹣1,0)
C.(0,1)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】【2017福建三明5月質(zhì)檢】已知函數(shù)

時,求證:過點有三條直線與曲線相切;

時,,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足 , ,n∈N*
(1)求證:數(shù)列 為等比數(shù)列;
(2)是否存在互不相等的正整數(shù)m,s,t,使m,s,t成等差數(shù)列,且am﹣1,as﹣1,at﹣1成等比數(shù)列?如果存在,求出所有符合條件的m,s,t;如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案