【題目】【2017福建三明5月質(zhì)檢】已知函數(shù),

當(dāng)時(shí),求證:過點(diǎn)有三條直線與曲線相切;

當(dāng)時(shí),,求實(shí)數(shù)的取值范圍.

【答案】I詳見解析;II.

【解析】

解法一:當(dāng)時(shí),

設(shè)直線與曲線相切,其切點(diǎn)為

則曲線在點(diǎn)處的切線方程為:,

因?yàn)榍芯過點(diǎn),所以

,

,∴,

設(shè)

,,

在三個(gè)區(qū)間上至少各有一個(gè)根

又因?yàn)橐辉畏匠讨炼嘤腥齻(gè)根,所以方程恰有三個(gè)根,

故過點(diǎn)有三條直線與曲線相切.

∵當(dāng)時(shí),,即當(dāng)時(shí),

∴當(dāng)時(shí),,

設(shè),則,

設(shè),則

1當(dāng)時(shí),∵,∴,從而當(dāng)且僅當(dāng)時(shí),等號(hào)成立

上單調(diào)遞增,

又∵,∴當(dāng)時(shí),,從而當(dāng)時(shí),,

上單調(diào)遞減,又∵,

從而當(dāng)時(shí),,即

于是當(dāng)時(shí),

2當(dāng)時(shí),令,得,∴,

故當(dāng)時(shí),,

上單調(diào)遞減,

又∵,∴當(dāng)時(shí),

從而當(dāng)時(shí),

上單調(diào)遞增,又∵,

從而當(dāng)時(shí),,即

于是當(dāng)時(shí),,

綜合得的取值范圍為

解法二:當(dāng)時(shí),,

設(shè)直線與曲線相切,其切點(diǎn)為

則曲線在點(diǎn)處的切線方程為,

因?yàn)榍芯過點(diǎn),所以

,

,∴

設(shè),則,令

當(dāng)變化時(shí),,變化情況如下表:

+

0

-

0

+

極大值

極小值

恰有三個(gè)根,

故過點(diǎn)有三條直線與曲線相切.

同解法一.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)= ,(a>0,且a≠1).
(1)求f(x)的定義域.
(2)證明f(x)為奇函數(shù).
(3)求使f(x)>0成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若橢圓的對(duì)稱軸為坐標(biāo)軸,長(zhǎng)軸長(zhǎng)與短軸長(zhǎng)的和為18,焦距為6,則橢圓的方程為(
A.
B.
C.
D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【2017北京西城區(qū)5月模擬】某大學(xué)為調(diào)研學(xué)生在,兩家餐廳用餐的滿意度,從在兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取了100人,每人分別對(duì)這兩家餐廳進(jìn)行評(píng)分,滿分均為60分.

整理評(píng)分?jǐn)?shù)據(jù),將分?jǐn)?shù)以10為組距分成6組:,,,,,得到餐廳分?jǐn)?shù)的頻率分布直方圖,和餐廳分?jǐn)?shù)的頻數(shù)分布表:

定義學(xué)生對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”如下:

分?jǐn)?shù)

滿意度指數(shù)

在抽樣的100人中,求對(duì)餐廳評(píng)價(jià)“滿意度指數(shù)”為0的人數(shù);

從該校在兩家餐廳都用過餐的學(xué)生中隨機(jī)抽取1人進(jìn)行調(diào)查,試估計(jì)其對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”比對(duì)餐廳評(píng)價(jià)的“滿意度指數(shù)”高的概率;

如果從,兩家餐廳中選擇一家用餐,你會(huì)選擇哪一家?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,程序框圖的輸出結(jié)果為﹣18,那么判斷框①表示的“條件”應(yīng)該是(

A.i>10?
B.i>9?
C.i>8?
D.i>7?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)直線l1 , l2分別是函數(shù)f(x)= 圖象上點(diǎn)P1 , P2處的切線,l1與l2垂直相交于點(diǎn)P,且l1 , l2分別與y軸相交于點(diǎn)A,B,則△PAB的面積的取值范圍是(
A.(0,1)
B.(0,2)
C.(0,+∞)
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A,B,C,D是直角坐標(biāo)系中不同的四點(diǎn),若 (λ∈R), (μ∈R),且 =2,則下列說法正確的是(
A.C可能是線段AB的中點(diǎn)
B.D可能是線段AB的中點(diǎn)
C.C,D可能同時(shí)在線段AB上
D.C,D不可能同時(shí)在線段AB的延長(zhǎng)線上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,點(diǎn)P到兩點(diǎn)(0,﹣),(0,)的距離之和等于4,設(shè)點(diǎn)P的軌跡為C,直線y=kx+1與C交于A,B兩點(diǎn).
(1)寫出C的方程;
(2)若 , 求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2012年“雙節(jié)”期間,高速公路車輛較多.某調(diào)查公司在一服務(wù)區(qū)從七座以下小型汽車中按進(jìn)服務(wù)區(qū)的先后每間隔50輛就抽取一輛的抽樣方法抽取40名駕駛員進(jìn)行詢問調(diào)查,將他們?cè)谀扯胃咚俟返能囁伲╧m/t)分成六段:(60,65),[65,70),[70,75),[80,85),[85,90)后得到如圖的頻率分布直方圖.
(1)某調(diào)查公司在采樣中,用到的是什么抽樣方法?
(2)求這40輛小型車輛車速的眾數(shù)和中位數(shù)的估計(jì)值.
(3)若從車速在[60,70)的車輛中任抽取2輛,求車速在[65,70)的車輛至少有一輛的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案