1.函數(shù)f(x)=log${\;}_{\frac{1}{2}}$(x2-2x-3)的單調(diào)遞減區(qū)間是(  )
A.(-∞,1)B.(-∞,-1)C.(3,+∞)D.(1,+∞)

分析 先求出函數(shù)的定義域,然后利用復(fù)合函數(shù)的單調(diào)性確定函數(shù)f(x)的單調(diào)遞減區(qū)間.

解答 解:要使函數(shù)有意義,則x2-2x-3>0,解得x<-1或x>3,
設(shè)t=x2-2x-3,則函數(shù)在(-∞,1]上單調(diào)遞減,在[1,+∞)上單調(diào)遞增.
因?yàn)楹瘮?shù)log0.5t在定義域上為減函數(shù),
所以由復(fù)合函數(shù)的單調(diào)性性質(zhì)可知,則此函數(shù)的單調(diào)遞減區(qū)間是(3,+∞).
故選C.

點(diǎn)評(píng) 本題主要考查了復(fù)合函數(shù)的單調(diào)性以及單調(diào)區(qū)間的求法.對(duì)應(yīng)復(fù)合函數(shù)的單調(diào)性,一要注意先確定函數(shù)的定義域,二要利用復(fù)合函數(shù)與內(nèi)層函數(shù)和外層函數(shù)單調(diào)性之間的關(guān)系進(jìn)行判斷,判斷的依據(jù)是“同增異減”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.在△ABC中,若tanAtanB=1,則$sin(C+\frac{π}{3})$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知A、D分別為橢圓E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,({a>b>0})$的左頂點(diǎn)與上頂點(diǎn),橢圓的離心率e=$\frac{{\sqrt{3}}}{2}$,F(xiàn)1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P是線段AD上的任意一點(diǎn),且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}$的最大值為1.
(1)求橢圓E的方程.
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A,B,且OA⊥OB(O為坐標(biāo)原點(diǎn)),若存在,求出該圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.平面直角坐標(biāo)系xoy中,橢圓C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,過(guò)橢圓右焦點(diǎn)F作兩條相互垂直的弦,當(dāng)其中一條弦所在直線斜率為0時(shí),兩弦長(zhǎng)之和為6.
(1)求橢圓的方程;
(2)A,B是拋物線C2:x2=4y上兩點(diǎn),且A,B處的切線相互垂直,直線AB與橢圓C1相交于C,D兩點(diǎn),求弦|CD|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=4x-2•2x+1-6,其中x∈[0,3].
(1)求函數(shù)f(x)的最大值和最小值;
(2)若實(shí)數(shù)a滿足f(x)-a•2x≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知函數(shù)f(x)的導(dǎo)數(shù)f'(x),f(x)不是常數(shù)函數(shù),且(x+1)f(x)+xf'(x)≥0,對(duì)x∈[0,+∞)恒成立,則下列不等式一定成立的是( 。
A.ef(1)<f(2)B.f(1)<0C.ef(e)<2f(2)D.f(1)<2ef(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{3}}}{2}$,且過(guò)點(diǎn)A(2,1).
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 若P,Q是橢圓C上的兩個(gè)動(dòng)點(diǎn),且使∠PAQ的角平分線總垂直于x軸,試判斷直線PQ的斜率是否為定值?若是,求出該值;若不是,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)向量$\overrightarrow{a}$=(4,2),$\overrightarrow$=(1,-1),則(2$\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$等于( 。
A.2B.-2C.-12D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若直線a∥α,直線b?α,則直線a與直線b的位置關(guān)系為平行或異面.

查看答案和解析>>

同步練習(xí)冊(cè)答案