8.若函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(3-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,則f(-1)+f(log26)=(  )
A.3B.6C.9D.12

分析 直接利用分段函數(shù)化簡求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{1+lo{g}_{2}(3-x),x<1}\\{{2}^{x-1},x≥1}\end{array}\right.$,
則f(-1)+f(log26)=1+log2(3+1)+${2}^{lo{g}_{2}6-1}$
=1+2+3=6.
故選:B.

點(diǎn)評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,注意對數(shù)運(yùn)算法則的應(yīng)用,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在△ABC中,若b2=ac,則cos(A-C)+cosB+cos2B-2的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.(1)已知0<a<1,0<b<1,0<c<1,用分析法證明:$\frac{a+b+c+abc}{1+ab+bc+ca}≤1$
(2)已知a+b+c=0,ab+bc+ca>0且abc>0,用反證法證明:a,b,c都大于零.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.z∈C,若|z|-$\overline{z}$=1+2i,則$\frac{z}{1+i}$等于( 。
A.$\frac{7}{4}+\frac{1}{4}$iB.$\frac{7}{4}-\frac{1}{4}$iC.-$\frac{1}{4}-\frac{1}{4}$iD.-$\frac{1}{4}+\frac{1}{4}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知A、B是過拋物線y2=2px(p>0)焦點(diǎn)F的直線與拋物線的交點(diǎn),O是坐標(biāo)原點(diǎn),且滿足AB=3FB,S△OAB=$\frac{{\sqrt{2}}}{3}$AB,則AB的值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若復(fù)數(shù)z1=3+4i,z2=a+i,且z1•$\overline{{z}_{2}}$是實(shí)數(shù)(其中$\overline{{z}_{2}}$為z2的共軛復(fù)數(shù)),則實(shí)數(shù)a=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知a+b>0,比較$\frac{a}{^{2}}$+$\frac{{a}^{2}}$與$\frac{1}{a}$+$\frac{1}$的大。⒓右宰C明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=bn•2n,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.P(cosθ,2tanθ)位于第三象限,則么角θ所在象限是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

同步練習(xí)冊答案