9.若直線y=x+a與曲線f(x)=x•lnx+b相切,其中a、b∈R,則b-a=1.

分析 設(shè)出切點(diǎn)坐標(biāo),求出函數(shù)在切點(diǎn)處的導(dǎo)數(shù),把切點(diǎn)橫坐標(biāo)分別代入曲線和直線方程,由縱坐標(biāo)相等得一關(guān)系式,再由切點(diǎn)處的導(dǎo)數(shù)等于切線的斜率得另一關(guān)系式,聯(lián)立后求得b-a的值.

解答 解:設(shè)直線y=x+a與曲線f(x)=x•lnx+b的切點(diǎn)為(x0,y0),
則有$\left\{\begin{array}{l}{{x}_{0}+a={x}_{0}•ln{x}_{0}+b}\\{f′({x}_{0})=ln{x}_{0}+1=1}\end{array}\right.$,即x0=1,b-a=1.
故答案為:1

點(diǎn)評(píng) 本題考查了利用導(dǎo)數(shù)研究曲線上某點(diǎn)處的切線方程,考查了導(dǎo)數(shù)的幾何意義,考查學(xué)生的計(jì)算能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.平面直角坐標(biāo)系xOy中,已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點(diǎn)為F,離心率為$\frac{{\sqrt{2}}}{2}$,過點(diǎn)F且垂直于長(zhǎng)軸的弦長(zhǎng)為$\sqrt{2}$.
(I)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)A,B分別是橢圓的左、右頂點(diǎn),若過點(diǎn)P(-2,0)的直線與橢圓相交于不同兩點(diǎn)M,N.
(i)求證:∠AFM=∠BFN;
(ii)求△MNF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,已知F為拋物線y2=2x的焦點(diǎn),點(diǎn)A,B,C在該拋物線上,其中A,C關(guān)于x軸對(duì)稱(A在第一象限),且直線BC經(jīng)過點(diǎn)F.
(Ⅰ)若△ABC的重心為G(x0,$\frac{2}{3}$),求x0的值;
(Ⅱ)設(shè)S△ABO=S1,S△CFO=S2,其中O為坐標(biāo)原點(diǎn),求S12+S22的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,一個(gè)圓錐形的空杯子上面放著一個(gè)半球形的冰淇淋,如果冰淇淋融化了,冰淇淋會(huì)從杯子溢出嗎?請(qǐng)計(jì)算說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知f(x)是R上的奇函數(shù),且f(1)=3,f(x+3)=f(x),則f(8)=( 。
A.3B.-3C.8D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}中,a3=5,a4+a8=22,則a9的值為(  )
A.14B.17C.19D.21

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知拋物線C1:y2=-4x的準(zhǔn)線經(jīng)過拋物線C2:y2=2px的焦點(diǎn)
(Ⅰ)求拋物線C2的方程;
(Ⅱ)點(diǎn)M,N分別在拋物線C1,C2上,且點(diǎn)M,N分別位于第三、第一象限.若拋物線C2上存在一點(diǎn)Q,滿足$\overrightarrow{OM}$+λ$\overrightarrow{OQ}$=$\overrightarrow{ON}$(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知拋物線C:y2=8x的焦點(diǎn)為F,P為拋物線的準(zhǔn)線上的一點(diǎn),且P的縱坐標(biāo)為正數(shù),Q是直線PF與拋物線C的一個(gè)交點(diǎn),若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,則直線PF的方程為(  )
A.x-y-2=0B.x+y-2=0C.x±y-2=0D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x+a|+|x-2|.
(1)當(dāng)a=-3時(shí),求不等式f(x)≥3的解集;
(2)設(shè)集合A={x|f(x)≤|x-4|},集合B={x|1≤x≤2},且B⊆A,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案