【題目】已知函數(shù)f(x)=Asin(ωx+ )(A>0,ω>0)的圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0 , 2)和(x0+ ,﹣2).
(1)求函數(shù)f(x)的解析式;
(2)求sin(x0+ )的值.
【答案】
(1)解:∵圖象在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+ ,﹣2).
∴A=2, =x0+ ﹣x0= ,
即函數(shù)的周期T=π,即T= ,解得ω=2,
即f(x)=2sin(2x+ )
(2)解:∵函數(shù)的最高點(diǎn)的坐標(biāo)為(x0,2),
∴2x0+ = ,
即x0= ,
則sin(x0+ )=sin( + )=sin cos +cos sin
= (sin +cos )= ( )=
【解析】(1)根據(jù)條件求出振幅以及函數(shù)的周期,即可求函數(shù)f(x)的解析式;(2)根據(jù)函數(shù)的最值,求出x0的大小,結(jié)合兩角和差的正弦公式進(jìn)行求解即可.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識(shí),掌握兩角和與差的正弦公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正三棱錐P﹣ABC的側(cè)面是直角三角形,PA=6,頂點(diǎn)P在平面ABC內(nèi)的正投影為點(diǎn)D,D在平面PAB內(nèi)的正投影為點(diǎn)E,連接PE并延長(zhǎng)交AB于點(diǎn)G.
(1)證明:G是AB的中點(diǎn);
(2)在圖中作出點(diǎn)E在平面PAC內(nèi)的正投影F(說(shuō)明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲廠以x千克/小時(shí)的速度運(yùn)輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時(shí)可獲得利潤(rùn)是100(5x+1﹣ )元.
(1)寫出生產(chǎn)該產(chǎn)品t(t≥0)小時(shí)可獲得利潤(rùn)的表達(dá)式;
(2)要使生產(chǎn)該產(chǎn)品2 小時(shí)獲得的利潤(rùn)不低于3000元,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在點(diǎn)P(1,f(1))處的切線方程為y=3x+1,y=f(x)在x=-2處有極值.
(1)求f(x)的解析式.
(2)求y=f(x)在[-3,1]上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)有極值.
(1)求的取值范圍;
(2)若在處取得極值,且當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有下列結(jié)論:
(1)命題 ,為真命題 ;
(2)設(shè) ,,則 p 是 q 的充分不必要條件 ;
(3)命題:若,則或,其否命題是假命題;
(4)非零向量與滿足,則與的夾角為.
其中正確的結(jié)論有( )
A. 3個(gè) B. 2個(gè) C. 1個(gè) D. 0個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R恒有f(x+1)=f(x﹣1),已知當(dāng)x∈[0,1]時(shí),f(x)=( )1﹣x , 則
①2是函數(shù)f(x)的一個(gè)周期;
②函數(shù)f(x)在(1,2)上是減函數(shù),在(2,3)上是增函數(shù);
③函數(shù)f(x)的最大值是1,最小值是0;
④x=1是函數(shù)f(x)的一個(gè)對(duì)稱軸;
⑤當(dāng)x∈(3,4)時(shí),f(x)=( )x﹣3 .
其中所有正確命題的序號(hào)是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)兩個(gè)向量 =(λ+2,λ2﹣cos2α)和 =(m, +sinα),其中λ,m,α為實(shí)數(shù).若 =2 ,則 的取值范圍是( )
A.[﹣1,6]
B.[﹣6,1]
C.(﹣∞, ]
D.[4,8]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+ )(ω>0),將函數(shù)y=f(x)的圖象向右平移 個(gè)單位長(zhǎng)度后,所得圖象與原函數(shù)圖象重合ω最小值等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com