7.已知某空間幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{40}{3}$B.$\frac{34}{3}$C.$10+\frac{{4\sqrt{2}}}{3}$D.$6+\frac{{4\sqrt{3}}}{3}$

分析 由三視圖可知:該幾何體為左右兩部分組成:其中左面由上下兩部分組成,上面是一個(gè)直三棱柱,下面是正方體,右面是一個(gè)四棱錐.

解答 解:由三視圖可知:該幾何體為左右兩部分組成:其中左面由上下兩部分組成,上面是一個(gè)直三棱柱,下面是正方體,右面是一個(gè)四棱錐.
∴該幾何體的體積V=23+$\frac{1}{2}×1×2×2$+$\frac{1}{3}×{2}^{2}×1$=$\frac{34}{3}$.
故選:B.

點(diǎn)評(píng) 本題考查了棱錐、棱柱、正方體的三視圖與體積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知等差數(shù)列{an}中,a5=9,a7=13,等比數(shù)列{bn}的通項(xiàng)公式bn=2n-1,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an+bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知函數(shù)y=|sin2x-4sinx-a|的最大值為4,則常數(shù)a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.函數(shù)f(x)=ex-alnx(其中a∈R,e為自然常數(shù))
①?a∈R,使得直線y=ex為函數(shù)f(x)的一條切線;
②對(duì)?a<0,函數(shù)f(x)的導(dǎo)函數(shù)f′(x)無(wú)零點(diǎn);
③對(duì)?a<0,函數(shù)f(x)總存在零點(diǎn);
則上述結(jié)論正確的是①②③.(寫(xiě)出所有正確的結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在直三棱柱中ABC-A1B1C1中,二面角A-A1B-C是直二面角,AB=BC═2,點(diǎn)M是棱CC1的中點(diǎn),三棱錐M-BCA1的體積為1.
(I )證明:BC丄平面ABA1
(II)求直線MB與平面BCA1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知曲線C1的參數(shù)方程為:$\left\{\begin{array}{l}{x=3+3cosα}\\{y=3sinα}\end{array}\right.$ (α為參數(shù)),A是C1上的動(dòng)點(diǎn),B點(diǎn)滿足$\overrightarrow{OB}$=4$\overrightarrow{OA}$,O為坐標(biāo)原點(diǎn),B點(diǎn)的軌跡為曲線C2
(1)求C2的參數(shù)方程;
(2)在以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線θ=$\frac{π}{6}$與C1的異于極點(diǎn)的交點(diǎn)為M,與C2的異于極點(diǎn)的交點(diǎn)為N,求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x+y)=f(x)-f(y)對(duì)全體實(shí)數(shù)x,y都成立,則f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列說(shuō)法中正確的是( 。
A.命題“若x2=1,則x=1”的否命題為“若x2=1,則x≠1”
B.命題:“若a+bi=1+i(a,b∈R,i為虛數(shù)單位),則a=b=1”為真命題
C.全稱(chēng)命題:“?x∈R,x2>0”的否定命題是:“?x∈R,x2≤0”
D.一個(gè)命題的逆命題為真,則它的逆否命題一定為假

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.設(shè)全集是實(shí)數(shù)集R,A={x|2x2-7x+3≤0},B={x|x+a<0}.
(1)當(dāng)a=-2時(shí),求A∩B;
(2)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案