【題目】已知橢圓C:()的左、右焦點(diǎn)分別為,且橢圓上存在一點(diǎn)P,滿足.,
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)已知A,B分別是橢圓C的左、右頂點(diǎn),過的直線交橢圓C于M,N兩點(diǎn),記直線,的交點(diǎn)為T,是否存在一條定直線l,使點(diǎn)T恒在直線l上?
【答案】(1);(2)存在.
【解析】
(1)在內(nèi)利用余弦定理求得,根據(jù)橢圓的定義求得,由此求得,從而求得橢圓的標(biāo)準(zhǔn)方程.
(2)設(shè),,,利用、求得的關(guān)系式,設(shè)的方程為與橢圓的方程聯(lián)立,并寫出韋達(dá)定理,并代入上述求得的的關(guān)系式,由此判斷出橫在直線上.
(1)設(shè),內(nèi),由余弦定理得,
化簡得,解得,
故,∴,
所以橢圓C的標(biāo)準(zhǔn)方程為
(2)已知,,設(shè),,由
,①
,②
兩式相除得.又,
故,③
設(shè)的方程為,代入整理,
得,恒成立.
把,代入③,
得
,得到,故點(diǎn)T在定直線上.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)與函數(shù)的圖象有兩個不同的公共點(diǎn)、.
(1)求實(shí)數(shù)的取值范圍;
(2)設(shè)點(diǎn)是線段的中點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某大型公司為了切實(shí)保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關(guān)要求,決定在全公司范圍內(nèi)舉行一次乙肝普查.為此需要抽驗960人的血樣進(jìn)行化驗,由于人數(shù)較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗960次.方案②:按個人一組進(jìn)行隨機(jī)分組,把從每組個人抽來的血混合在一起進(jìn)行檢驗,如果每個人的血均為陰性,則驗出的結(jié)果呈陰性,這個人的血就只需檢驗一次(這時認(rèn)為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進(jìn)行一次化驗.這樣,該組個人的血總共需要化驗次.假設(shè)此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應(yīng)相互獨(dú)立.
(1)設(shè)方案②中,某組個人中每個人的血化驗次數(shù)為,求的分布列;
(2)設(shè).試比較方案②中,分別取2,3,4時,各需化驗的平均總次數(shù);并指出在這三種分組情況下,相比方案①,化驗次數(shù)最多可以平均減少多少次?(最后結(jié)果四舍五入保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一對夫婦為了給他們的獨(dú)生孩子支付將來上大學(xué)的費(fèi)用,從孩子一周歲生日開始,每年到銀行儲蓄元一年定期,若年利率為保持不變,且每年到期時存款(含利息)自動轉(zhuǎn)為新的一年定期,當(dāng)孩子18歲生日時不再存入,將所有存款(含利息)全部取回,則取回的錢的總數(shù)為
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)g(x)=ax2+bx+c(a≠0)滿足g(x+1)=2x+g(x),且g(0)=1.
(1)求g(x)的解析式;
(2)若在區(qū)間[-1,1]上,不等式g(x)-t>2x恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)證明:在區(qū)間上存在唯一零點(diǎn);
(2)令,若時有最大值,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的離心率為,以原點(diǎn)為圓心,橢圓的長半軸為半徑的圓與直線相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn), 為動直線與橢圓的兩個交點(diǎn),問:在軸上是否存在點(diǎn),使為定值?若存在,試求出點(diǎn)的坐標(biāo)和定值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形所在平面與等邊所在平面互相垂直,,分別為,的中點(diǎn).
(1)求證:平面.
(2)試問:在線段上是否存在一點(diǎn),使得平面平面?若存在,試指出點(diǎn)的位置,并證明你的結(jié)論:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,,,,,分別為的中點(diǎn),.
(1)求證:平面平面;
(2)設(shè),若平面與平面所成銳二面角,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com