【題目】在三棱錐A﹣BCD中,側棱AB、AC、AD兩兩垂直,△ABC,△ACD,△ADB的面積分別為 , , , 則三棱錐A﹣BCD的外接球的體積為
科目:高中數(shù)學 來源: 題型:
【題目】等比數(shù)列{an}是遞減數(shù)列,前n項的積為Tn,若T13=4T9,則a8a15=( )
A. 2 B. ±2 C. 4 D. ±4
【答案】A
【解析】
由題意可得 q>1,且 an >0,由條件可得 a1a2…a13=4a1a2…a9,化簡得a10a11a12a13=4,再由 a8a15=a10a13=a11a12,求得a8a15的值.
等比數(shù)列{an}是遞增數(shù)列,其前n項的積為Tn(n∈N*),若T13=4T9 ,設公比為q,
則由題意可得 q>1,且 an >0.
∴a1a2…a13=4a1a2…a9,∴a10a11a12a13=4.
又由等比數(shù)列的性質可得 a8a15=a10a13=a11a12,∴a8a15=2.
故選:A.
【點睛】
本題主要考查等比數(shù)列的定義和性質,求得 a10a11a12a13=4是解題的關鍵.
【題型】單選題
【結束】
10
【題目】若直線y=2x上存在點(x,y)滿足約束條件,則實數(shù)m的最大值為
A. -1 B. 1 C. D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在棱長AB=AD=2,AA1=3的長方體ABCDA1B1C1D1中,點E是平面BCC1B1上的動點,點F是CD的中點.試確定點E的位置,使D1E⊥平面AB1F.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x),若在定義域內存在x0 , 使得f(﹣x0)=﹣f(x0)成立,則稱x0為函數(shù)f(x)的局部對稱點.
(1)若a,b,c∈R,證明函數(shù)f(x)=ax3+bx2+cx﹣b必有局部對稱點;
(2)是否存在常數(shù)m,使得函數(shù)f(x)=4x﹣m2x+1+m2﹣3有局部對稱點?若存在,求出m的范圍,否則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(為參數(shù),).在以坐標原點為極點軸正半軸為極軸的極坐標系中,曲線
(1)說明是哪一種曲線,并將的方程化為極坐標方程;
(2)直線的極坐標方程為,其中滿足,若曲線與的公共點都在 上,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin2x+sinxcosx.
(Ⅰ)求函數(shù)f(x)的最小正周期和單調遞增區(qū)間;
(Ⅱ)當x∈[0,]時,求函數(shù)f(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0),e= , 其中F是橢圓的右焦點,焦距為2,直線l與橢圓C交于點A、B,點A,B的中點橫坐標為 , 且=λ(其中λ>1).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)求實數(shù)λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足2Sn+an=1;遞增的等差數(shù)列{bn}滿足b1=1,b3=﹣4.
(1)求數(shù)列{an},{bn}的通項公式;
(2)若cn是an , bn的等比中項,求數(shù)列{}的前n項和Tn;
(3)若c≤t2+2t﹣2對一切正整數(shù)n恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2-16x+q+3.
(1)若函數(shù)在區(qū)間[-1,1]上存在零點,求實數(shù)q的取值范圍;
(2)是否存在常數(shù)t(t≥0),當x∈[t,10]時,f(x)的值域為區(qū)間D,且區(qū)間D的長度為12-t(視區(qū)間[a,b]的長度為b-a).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com