【題目】如圖,三棱柱中,

側(cè)棱平面為等腰直角三角形,,且,分別是的中點(diǎn).

Ⅰ)求證:平面

平面;

Ⅱ)求直線(xiàn)與平面所成角.

【答案】見(jiàn)解析;(.

【解析】試題分析:(Ⅰ)第一問(wèn),先證明,即可證明平面;證明,即可證明平面. (Ⅱ)第二問(wèn),先證明即為直線(xiàn)與平面所成角. 再解,即可得到直線(xiàn)與平面所成角.

試題解析:)①連接,故點(diǎn)G即為的交點(diǎn),

G的中點(diǎn),又F的中點(diǎn),,

GF平面 平面平面

因?yàn)?/span>是等腰直角三角形斜邊的中點(diǎn),所以

因?yàn)槿庵?/span>為直三棱柱,所以面,

所以,

設(shè),則

所以,所以

所以平面

(Ⅱ)由(1)知在平面上的投影為,故在平面上的投影落在AF上.所以即為直線(xiàn)與平面所成角.

由題知:不妨設(shè),所以,

中,,

所以,即直線(xiàn)與平面所成角為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知AB、C是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;

(2)在橢圓E上是否存點(diǎn)Q,使得?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由.

(3)過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線(xiàn),切點(diǎn)分別為M、N,若直線(xiàn)MNx軸、y軸上的截距分別為mn,證明:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】揚(yáng)州大學(xué)數(shù)學(xué)系有6名大學(xué)生要去甲、乙兩所中學(xué)實(shí)習(xí),每名大學(xué)生都被隨機(jī)分配到兩所中學(xué)的其中一所.

(1)求6名大學(xué)生中至少有1名被分配到甲學(xué)校實(shí)習(xí)的概率;

(2)設(shè),分別表示分配到甲、乙兩所中學(xué)的大學(xué)生人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校的特長(zhǎng)班有名學(xué)生,其中有體育生名,藝術(shù)生名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測(cè)試,心率全部介于次/分到次/分之間.現(xiàn)將數(shù)據(jù)分成五組,第一組,第二組,…,第五章,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為.

(1)求的值并求這名同學(xué)心率的平均值;

(2)因?yàn)閷W(xué)習(xí)專(zhuān)業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若從第一組和第二組的學(xué)生中隨機(jī)抽取一名,該學(xué)生是體育生的概率為,請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為心率小于次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)?說(shuō)明你的理由.

心率小于60次/分

心率不小于60次/分

合計(jì)

體育生

20

藝術(shù)生

30

合計(jì)

50

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面平面,.

(1)證明:;

(2)若是正三角形,,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù). 若曲線(xiàn)y=在點(diǎn)P(e,f(e))處的切線(xiàn)方程為y=2x-e(為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試比較的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著移動(dòng)互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車(chē)應(yīng)運(yùn)而生.某市場(chǎng)研究人員為了了解共享單車(chē)運(yùn)營(yíng)公司的經(jīng)營(yíng)狀況,對(duì)該公司最近六個(gè)月內(nèi)的市場(chǎng)占有率進(jìn)行了統(tǒng)計(jì),并繪制了相應(yīng)的拆線(xiàn)圖.

(1)由拆線(xiàn)圖可以看出,可用線(xiàn)性回歸模型擬合月度市場(chǎng)占有率與月份代碼之間的關(guān)系.求關(guān)于的線(xiàn)性回歸方程,并預(yù)測(cè)公司2017年4月份(即時(shí))的市場(chǎng)占有率;

(2)為進(jìn)一步擴(kuò)大市場(chǎng),公司擬再采購(gòu)一批單車(chē).現(xiàn)有采購(gòu)成本分別為1000元/輛和1200元/輛的兩款車(chē)型可供選擇,按規(guī)定每輛單車(chē)最多使用4年,但由于多種原因(如騎行頻率等)會(huì)導(dǎo)致車(chē)輛報(bào)廢年限各不相同.考慮到公司運(yùn)營(yíng)的經(jīng)濟(jì)效益,該公司決定先對(duì)兩款車(chē)型的單車(chē)各100輛進(jìn)行科學(xué)模擬測(cè)試,得到兩款單車(chē)使用壽命頻數(shù)表如下:

車(chē)型 報(bào)廢年限

1年

2年

3年

4年

總計(jì)

20

35

35

10

100

10

30

40

20

100

經(jīng)測(cè)算,平均每輛單車(chē)每年可以帶來(lái)收入500元.不考慮除采購(gòu)成本之外的其他成本,假設(shè)每輛單車(chē)的使用壽命都是整年,且以頻率作為每輛單車(chē)使用壽命的概率.如果你是 公司的負(fù)責(zé)人,以每輛單車(chē)產(chǎn)生利潤(rùn)的期望值為決策依據(jù),你會(huì)選擇采購(gòu)哪款車(chē)型?

(參考公式:回歸直線(xiàn)方程為,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若曲線(xiàn)處的切線(xiàn)與直線(xiàn)垂直,求的值;

(2)討論函數(shù)的單調(diào)性;若存在極值點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案