【題目】揚(yáng)州大學(xué)數(shù)學(xué)系有6名大學(xué)生要去甲、乙兩所中學(xué)實(shí)習(xí),每名大學(xué)生都被隨機(jī)分配到兩所中學(xué)的其中一所.
(1)求6名大學(xué)生中至少有1名被分配到甲學(xué)校實(shí)習(xí)的概率;
(2)設(shè),分別表示分配到甲、乙兩所中學(xué)的大學(xué)生人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
【答案】(1);(2)見解析.
【解析】試題分析:
⑴由題意結(jié)合對(duì)立事件概率公式可得6名大學(xué)生中至少有1名被分配到甲學(xué)校實(shí)習(xí)的概率為.
⑵由題意可得所有可能取值是0,2,4,6,結(jié)合概率公式計(jì)算可得,,,, 據(jù)此可得分布列,計(jì)算隨機(jī)變量的數(shù)學(xué)期望.
試題解析:
⑴記 “6名大學(xué)生中至少有1名被分配到甲學(xué)校實(shí)習(xí)” 為事件,則.
答:6名大學(xué)生中至少有1名被分配到甲學(xué)校實(shí)習(xí)的概率為.
⑵所有可能取值是0,2,4,6,記“6名學(xué)生中恰有名被分到甲學(xué)校實(shí)習(xí)”為事件(),則
,
,
,
,
所以隨機(jī)變量的概率分布為:
0 | 2 | 4 | 6 | |
所以隨機(jī)變量的數(shù)學(xué)期望.
答:隨機(jī)變量的數(shù)學(xué)期望.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐,底面為菱形,,為上的點(diǎn),過(guò)的平面分別交,于點(diǎn),,且平面.
(1)證明:;
(2)當(dāng)為的中點(diǎn),,與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)中央電視臺(tái)《魅力中國(guó)城》欄目的三輪角逐,黔東南州以三輪競(jìng)演總分排名第一名問(wèn)鼎“最具人氣魅力城市”.如圖統(tǒng)計(jì)了黔東南州從2010年到2017年的旅游總?cè)藬?shù)(萬(wàn)人次)的變化情況,從一個(gè)側(cè)面展示了大美黔東南的魅力所在.根據(jù)這個(gè)圖表,在下列給出的黔東南州從2010年到2017年的旅游總?cè)藬?shù)的四個(gè)判斷中,錯(cuò)誤的是( )
A. 旅游總?cè)藬?shù)逐年增加
B. 2017年旅游總?cè)藬?shù)超過(guò)2015、2016兩年的旅游總?cè)藬?shù)的和
C. 年份數(shù)與旅游總?cè)藬?shù)成正相關(guān)
D. 從2014年起旅游總?cè)藬?shù)增長(zhǎng)加快
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[2018·石家莊一檢]已知函數(shù).
(1)若,求函數(shù)的圖像在點(diǎn)處的切線方程;
(2)若函數(shù)有兩個(gè)極值點(diǎn),,且,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,射線和均為筆直的公路,扇形區(qū)域(含邊界)是一蔬菜種植園,其中、分別在射線和上.經(jīng)測(cè)量得,扇形的圓心角(即)為、半徑為1千米.為了方便菜農(nóng)經(jīng)營(yíng),打算在扇形區(qū)域外修建一條公路,分別與射線、交于、兩點(diǎn),并要求與扇形弧相切于點(diǎn).設(shè)(單位:弧度),假設(shè)所有公路的寬度均忽略不計(jì).
(1)試將公路的長(zhǎng)度表示為的函數(shù),并寫出的取值范圍;
(2)試確定的值,使得公路的長(zhǎng)度最小,并求出其最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為矩形,平面平面,,,為的中點(diǎn),為上一點(diǎn),交于點(diǎn).
(1)證明:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標(biāo)方程為.
()求的極坐標(biāo)方程與的直角坐標(biāo)方程.
()若是上任意一點(diǎn),過(guò)點(diǎn)的直線交于點(diǎn),,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,
側(cè)棱平面,為等腰直角三角形,,且,分別是的中點(diǎn).
(Ⅰ)求證:①平面;
②平面;
(Ⅱ)求直線與平面所成角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過(guò)點(diǎn),且與曲線交于兩點(diǎn),試求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com