【題目】如圖所示三角形數(shù)陣中,aij為第i行第j個數(shù),若amn=2017,則實數(shù)對(m,n)為

【答案】(45,41)
【解析】解:觀察圖象可發(fā)現(xiàn)以下規(guī)律:
(1)第一行有1個數(shù)字,第二行有2個數(shù)字,第三行有3個數(shù)字,…故可歸納得出第i行有i個數(shù)字;
(2)每一行的數(shù)字從左到右都是等差為2的等差數(shù)列;
(3)每一行的第一個數(shù)字都比上一行的最后一個數(shù)字大1;
(4)每一行的最后一個數(shù)字都是該行數(shù)的平方.
∵442=1936<2017,452=2025>2017,∴2017是第45行的數(shù)字,
設(shè)第45行第n個數(shù)字為an , 則a1=1937,d=2,∴an=1937+2(n﹣1)=2n+1935.
令an=2n+1935=2017,解得n=41.
∴2015是第45行第41個數(shù)字,
所以答案是(45,41).
【考點精析】解答此題的關(guān)鍵在于理解歸納推理的相關(guān)知識,掌握根據(jù)一類事物的部分對象具有某種性質(zhì),退出這類事物的所有對象都具有這種性質(zhì)的推理,叫做歸納推理.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (是常數(shù)),

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,函數(shù)有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)f(x),當(dāng)x>0時f(x)=x+ ,則f(﹣1)=(
A.1
B.2
C.﹣1
D.﹣2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知{fn(x)}滿足f1(x)= (x>0),fn+1(x)=f1[fn(x)],
(1)求f2(x),f3(x),并猜想fn(x)的表達式;
(2)用數(shù)學(xué)歸納法證明對fn(x)的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機詢問110名性別不同的大學(xué)生是否愛好某項運動,得到如下的列聯(lián)表:

愛好

40

20

60

不愛好

20

30

50

60

50

110

根據(jù)上述數(shù)據(jù)能得出的結(jié)論是(
(參考公式與數(shù)據(jù):X2= .當(dāng)X2>3.841時,有95%的把握說事件A與B有關(guān);當(dāng)X2>6.635時,有99%的把握說事件A與B有關(guān); 當(dāng)X2<3.841時認為事件A與B無關(guān).)
A.有99%的把握認為“愛好該項運動與性別有關(guān)”
B.有99%的把握認為“愛好該項運動與性別無關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關(guān)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知( n的展開式中,第三項的系數(shù)為144.
(1)求該展開式中所有偶數(shù)項的二項式系數(shù)之和;
(2)求該展開式的所有有理項.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}的前n項和為Sn , 公差d≠0,且S3+S5=50,a1 , a4 , a13成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足 + +…+ =an﹣1(n∈N*),求數(shù)列{nbn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】醫(yī)院到某社區(qū)檢查老年人的體質(zhì)健康情況,從該社區(qū)全體老人中,隨機抽取12名進行體質(zhì)健康測試,測試成績(百分制)如下:65,78,90,86,52,87,72,86,87,98,88,86.根據(jù)老年人體質(zhì)健康標(biāo)準(zhǔn),成績不低于80的為優(yōu)良.
(1)將頻率視為概率,根據(jù)樣本估計總體的思想,在該社區(qū)全體老年人中任選3人進行體質(zhì)健康測試,求至少有1人成績是“優(yōu)良”的概率;
(2)從抽取的12人中隨機選取3人,記ξ表示成績“優(yōu)良”的人數(shù),求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三國時代吳國數(shù)學(xué)家趙爽所注《周髀算經(jīng)》中給出了勾股定理的絕妙證明. 下面是趙爽的弦圖及注文,弦圖是一個以勾股之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用股+(股-勾)朱實+黃實=弦實,化簡,得勾2+股2=弦2. 設(shè)勾股形中勾股比為,若向弦圖內(nèi)隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內(nèi)的圖釘數(shù)大約為( )

A. 134 B. 866 C. 300 D. 500

查看答案和解析>>

同步練習(xí)冊答案