【題目】已知奇函數(shù)f(x),當(dāng)x>0時f(x)=x+ ,則f(﹣1)=( )
A.1
B.2
C.﹣1
D.﹣2
【答案】D
【解析】解:∵奇函數(shù)f(x)
∴f(﹣1)=﹣f(1)
而f(1)=1+1=2
∴f(﹣1)=﹣f(1)=﹣2
故選D
【考點精析】認(rèn)真審題,首先需要了解函數(shù)奇偶性的性質(zhì)(在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個為偶就為偶,兩個為奇才為奇),還要掌握函數(shù)的值(函數(shù)值的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法)的相關(guān)知識才是答題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)f(x)的圖象與x軸交于(﹣2,0),(4,0)兩點,且頂點為(1,﹣ ).
(1)求f(x)的函數(shù)解析式;
(2)指出圖象的開口方向、對稱軸和頂點坐標(biāo);
(3)分析函數(shù)的單調(diào)性,求函數(shù)的最大值或最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) (是常數(shù)),
(1)求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,函數(shù)有零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù), ().
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)當(dāng)時,記,是否存在整數(shù),使得關(guān)于的不等式有解?若存在,請求出的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)= (ax﹣a﹣x)(a>0且a≠1).
(1)判斷f(x)的奇偶性.
(2)討論f(x)的單調(diào)性.
(3)當(dāng)x∈[﹣1,1]時,f(x)≥b恒成立,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一條巡邏船由南向北行駛,在處測得山頂在北偏東方向上,勻速向北航行分鐘到達(dá)處,測得山頂位于北偏東方向上,此時測得山頂的仰角,若山高為千米,
(1)船的航行速度是每小時多少千米?
(2)若該船繼續(xù)航行分鐘到達(dá)處,問此時山頂位于處的南偏東什么方向?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示三角形數(shù)陣中,aij為第i行第j個數(shù),若amn=2017,則實數(shù)對(m,n)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知一組數(shù)據(jù)x1 , x2 , x3 , x4 , x5的平均數(shù)是2,方差是 ,那么另一組數(shù)據(jù)3x1﹣2,3x2﹣2,3x3﹣3,3x4﹣2,3x5﹣2的平均數(shù)和方差分別為( )
A.2,
B.4,3
C.4,
D.2,1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com