在雙曲線中,F(xiàn)1、F2分別為其左右焦點(diǎn),點(diǎn)P在雙曲線上運(yùn)動(dòng),求△PF1F2的重心G的軌跡方程.

(y≠0)

解析試題分析:在雙曲線中F1(-6,0),F(xiàn)2(6,0),設(shè)點(diǎn)P(m,n ),則  ①.
設(shè)△PF1F2的重心G(x,y),則由三角形的重心坐標(biāo)公式可得
x=,y=,即 m=3x,n=3y,代入①化簡(jiǎn)可得(y≠0)。
考點(diǎn):本題主要考查雙曲線的標(biāo)準(zhǔn)方程,三角形重心坐標(biāo)公式,軌跡方程求法。
點(diǎn)評(píng):中檔題,“相關(guān)點(diǎn)法(代入法)”是一種重要的求軌跡方程的方法。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分) 如圖,已知橢圓的兩個(gè)焦點(diǎn)分別為,斜率為k的直線l過左焦點(diǎn)F1且與橢圓的交點(diǎn)為A,B與y軸交點(diǎn)為C,又B為線段CF1的中點(diǎn),若,求橢圓離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,點(diǎn)與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對(duì)稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于.

(Ⅰ)求動(dòng)點(diǎn)P的軌跡方程;
(Ⅱ)設(shè)直線AP和BP分別與直線交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)過點(diǎn)作直線與拋物線相交于兩點(diǎn),圓

(1)若拋物線在點(diǎn)處的切線恰好與圓相切,求直線的方程;
(2)過點(diǎn)分別作圓的切線試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分12分)
已知中心在原點(diǎn)O,焦點(diǎn)在x軸上的橢圓E過點(diǎn)(1,),離心率為
(Ⅰ)求橢圓E的方程;
(Ⅱ)直線xy+1=0與橢圓E相交于A、B(BA上方)兩點(diǎn),問是否存在直線l,使l與橢圓相交于C、D(CD上方)兩點(diǎn)且ABCD為平行四邊形,若存在,求直線l的方程與平行四邊形ABCD的面積;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

動(dòng)圓經(jīng)過定點(diǎn),且與直線相切。
(1)求圓心的軌跡方程;
(2)直線過定點(diǎn)與曲線交于、兩點(diǎn):
①若,求直線的方程;
②若點(diǎn)始終在以為直徑的圓內(nèi),求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)設(shè)直線與直線交于點(diǎn).
(1)當(dāng)直線點(diǎn),且與直線垂直時(shí),求直線的方程;
(2)當(dāng)直線點(diǎn),且坐標(biāo)原點(diǎn)到直線的距離為時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
(1)焦點(diǎn)在x軸上的橢圓的一個(gè)頂點(diǎn)為A(2,0),其長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,求橢圓的標(biāo)準(zhǔn)方程.
(2)已知雙曲線的一條漸近線方程是,并經(jīng)過點(diǎn),求此雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知過點(diǎn)的動(dòng)直線與拋物線相交于兩點(diǎn),當(dāng)直線的斜率是時(shí),。
(1)求拋物線的方程;(5分)
(2)設(shè)線段的中垂線在軸上的截距為,求的取值范圍。(7分)

查看答案和解析>>

同步練習(xí)冊(cè)答案