(13分) 如圖,已知橢圓的兩個(gè)焦點(diǎn)分別為,斜率為k的直線l過左焦點(diǎn)F1且與橢圓的交點(diǎn)為A,B與y軸交點(diǎn)為C,又B為線段CF1的中點(diǎn),若,求橢圓離心率e的取值范圍。

解析試題分析:設(shè),則,因?yàn)锽在橢圓上
所以,即
,所以

考點(diǎn):橢圓離心率范圍
點(diǎn)評:求離心率范圍,結(jié)合已知條件斜率k有一定的范圍,因此要找到離心率與k的關(guān)系,通過k的范圍找到離心率范圍,本題難度不大

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓的離心率為,右焦點(diǎn)為。斜率為1的直線與橢圓交于兩點(diǎn),以為底邊作等腰三角形,頂點(diǎn)為。
(Ⅰ)求橢圓的方程;
(Ⅱ)求的面積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知點(diǎn),點(diǎn),直線都是圓的切線(點(diǎn)不在軸上)。
⑴求過點(diǎn)且焦點(diǎn)在軸上拋物線的標(biāo)準(zhǔn)方程;
⑵過點(diǎn)作直線與⑴中的拋物線相交于、兩點(diǎn),問是否存在定點(diǎn),使.為常數(shù)?若存在,求出點(diǎn)的坐標(biāo)與常數(shù);若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
如圖橢圓的兩個(gè)焦點(diǎn)為、和頂點(diǎn)、構(gòu)成面積為32的正方形.

(1)求此時(shí)橢圓的方程;
(2)設(shè)斜率為的直線與橢圓相交于不同的兩點(diǎn)、的中點(diǎn),且. 問:兩點(diǎn)能否關(guān)于直線對稱. 若能,求出的取值范圍;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分14分)
已知橢圓中心在原點(diǎn),焦點(diǎn)在x軸上,離心率,過橢圓的右焦點(diǎn)且垂直于長軸的弦長為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)已知直線與橢圓相交于兩點(diǎn),且坐標(biāo)原點(diǎn)到直線的距離為的大小是否為定值?若是求出該定值,不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)
已知橢圓C中心在原點(diǎn),焦點(diǎn)在軸上,一條經(jīng)過點(diǎn)且傾斜角余弦值為的直線交橢圓于A,B兩點(diǎn),交軸于M點(diǎn),又.
(1)求直線的方程;
(2)求橢圓C長軸的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分) 已知直線L:y=x+1與曲線C:交于不同的兩點(diǎn)A,B;O為坐標(biāo)原點(diǎn)。
(1)若,試探究在曲線C上僅存在幾個(gè)點(diǎn)到直線L的距離恰為?并說明理由;
(2)若,且a>b,,試求曲線C的離心率e的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分)已知中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在軸上,長軸長是短軸長的2倍的橢圓經(jīng)過點(diǎn)M(2,1)
(Ⅰ)求橢圓的方程;
(Ⅱ)直線平行于,且與橢圓交于A、B兩個(gè)不同點(diǎn).
(。┤為鈍角,求直線軸上的截距m的取值范圍;
(ⅱ)求證直線MAMBx軸圍成的三角形總是等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在雙曲線中,F(xiàn)1、F2分別為其左右焦點(diǎn),點(diǎn)P在雙曲線上運(yùn)動,求△PF1F2的重心G的軌跡方程.

查看答案和解析>>

同步練習(xí)冊答案