分析 (Ⅰ)曲線C1的極坐標(biāo)方程是ρ=$\sqrt{2}$,可得直角坐標(biāo)方程:x2+y2=2.設(shè)點(diǎn)P(x′,y′)是曲線C2上任一點(diǎn),則$\left\{\begin{array}{l}{x^'}=x\\{y^'}=\frac{{\sqrt{2}}}{2}y\end{array}\right.$,解得$\left\{\begin{array}{l}x={x^'}\\ y=\sqrt{2}{y^'}\end{array}\right.$,代入曲線C1即可得出.
(II)由直線l與曲線C2相交可得:$\frac{{3{t^2}}}{2}+\sqrt{2}t{x_0}+2\sqrt{2}t{y_0}+x_0^2+2y_0^2-2=0$,利用根與系數(shù)的關(guān)系及其|MA|•|MB|=$\frac{8}{3}$,可得點(diǎn)M軌跡的直角坐標(biāo)方程.再利用△≥0即可得出.
解答 解:(Ⅰ)曲線C1的極坐標(biāo)方程是ρ=$\sqrt{2}$,可得直角坐標(biāo)方程:x2+y2=2.
設(shè)點(diǎn)P(x′,y′)是曲線C2上任一點(diǎn),則$\left\{\begin{array}{l}{x^'}=x\\{y^'}=\frac{{\sqrt{2}}}{2}y\end{array}\right.$,解得$\left\{\begin{array}{l}x={x^'}\\ y=\sqrt{2}{y^'}\end{array}\right.$,
代入曲線C1可得:(x′)2+2(y′)2=2,
∴曲線C2的直角坐標(biāo)方程為:$\frac{x^2}{2}+{y^2}=1$.
(II)由直線l與曲線C2相交可得:$\frac{{3{t^2}}}{2}+\sqrt{2}t{x_0}+2\sqrt{2}t{y_0}+x_0^2+2y_0^2-2=0$,
$|MA|•|MB|=\frac{8}{3}$$⇒|\frac{x_0^2+2y_0^2-2}{{\frac{3}{2}}}|=\frac{8}{3}$,即:$x_0^2+2y_0^2=6$,x2+2y2=6表示一橢圓,
取y=x+m代入$\frac{x^2}{2}+{y^2}=1$,得:3x2+4mx+2m2-2=0,
由△≥0得$-\sqrt{3}≤m≤\sqrt{3}$,
故點(diǎn)M的軌跡是橢圓x2+2y2=6夾在平行直線$y=x±\sqrt{3}$之間的兩段。
點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、直線參數(shù)方程的應(yīng)用、一元二次方程的根與系數(shù)的關(guān)系,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,1] | B. | (0,1) | C. | (-1,1) | D. | (-1,1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a≥-$\frac{1}{2}$ | B. | a>0 | C. | -$\frac{1}{2}$<a<0 | D. | -$\frac{1}{2}$<a≤0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com