分析 (1)利用(|a|+|b|)2≤2(a2+b2)即可證明.
(2)由(1)中|a|+|b|≤1,自然聯(lián)想|a|-|b|≤|a±b|≤|a|+|b|,而a、b是方程的系數(shù),欲證根的絕對值小于等于1,由韋達定理,尋找解題途徑.
解答 證明:(1)∵a2+b2=$\frac{1}{2}$,
∴(|a|+|b|)2≤2(a2+b2)=1,當且僅當a=b時取等號.
∴|a|+|b|≤1;
(2)設方程的兩根為x1、x2,由韋達定理得x1+x2=-a,x1x2=b,
代入|a|+|b|≤1有|x1+x2|+|x1x2|≤1(*).
①用|x1|-|x2|≤|x1+x2|,把(*)式放縮得|x1|-|x2|+|x1x2|≤1,
∴(|x1|-1)(|x2|+1)≤0,∵|x2|+1>0,∴|x1|≤1.
②用|x2|-|x1|≤|x1+x2|,把(*)式放縮,
同理可得,|x2|≤1.綜合①②有|x1|≤1,|x2|≤1.
故方程x2+ax+b=0的兩根的絕對值均小于1.
點評 本題考查了基本不等式的性質,考查放縮法的運用,考查學生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分又不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com