8.已知函數(shù)f(x)的導(dǎo)函數(shù)為f'(x),且滿足f(x)=3xf'(1)+2lnx,則f'(1)=( 。
A.-eB.-1C.1D.e

分析 根據(jù)導(dǎo)數(shù)的公式求解出f'(x),可求f'(1)的值.

解答 解:函數(shù)f(x)=3xf'(1)+2lnx,
則f'(x)=3f'(1)+$\frac{2}{x}$,
那么:f'(1)=3f'(1)+2,
解得:f'(1)=-1.
故選B.

點評 本題主要考查導(dǎo)數(shù)的基本運算,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.B.C.2π+4D.3π+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.下列函數(shù)中,在區(qū)間(1,+∞)上為增函數(shù)的是( 。
A.y=-2x+1B.$y=\frac{x}{1-x}$C.$y={log_{\frac{1}{2}}}(x-1)$D.y=-(x-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出如下四個命題:
①若“p且q”為假命題,則p、q均為假命題;
②命題“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1<1”;
④在△ABC中,“A>B”是“sinA>sinB”的充要條件.
其中正確的命題的個數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.下列命題中,正確的序號是  ①
①函數(shù)f(x)=$\frac{2x+1}{x-2}$的對稱中心為(2,2).
②向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a$+$\overrightarrow b}$|=|${\overrightarrow a$-$\overrightarrow b}$|,則$\overrightarrow a$⊥$\overrightarrow b$
③將函數(shù)y=2sin(2x+$\frac{π}{4}$)向右平移$\frac{3}{8}$π個單位,將圖象上每一點橫坐標縮短為原來的$\frac{1}{2}$倍,所得函數(shù)為y=2cos4x
④定義運算$|\begin{array}{l}{a_1}\;\;\;\;{a_2}\\{b_1}\;\;\;\;{b_2}\end{array}|$=a1b2-a2b1,則函數(shù)f(x)=$|\begin{array}{l}{x^2}+3x\;\;\;\;\;1\\ x\;\;\;\;\;\;\;\;\;\;\;\frac{1}{3}x\end{array}|$的圖象在(1,$\frac{1}{3}$)處的切線方程為6x-3y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知命題p:?x∈R,x+1≤0,命題q:?x∈R,x2+mx+1>0恒成立.若p∧q為假命題,則實數(shù)m的取值范圍為( 。
A.m≥2B.m≤-2C.m≤-2或x≥2D.-2≤m≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知等差數(shù)列{an}滿足a3+a6=-$\frac{1}{3}$,a1a8=-$\frac{4}{3}$且a1>a8
(1)求數(shù)列{an}的通項公式;
(2)把數(shù)列{an}的第1項、第4項、第7項、…、第3n-2項、…分別作為數(shù)列{bn}的第1項、第2項、第3項、…、第n項、…,求數(shù)列{2${\;}^{_{n}}$}的所有項之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知集合A={x|1<2${\;}^{{x^2}-2x-3}}$<32},B={x|log2(x+3)<3}.
(1)求(∁RA)∩B;
(2)若(a,a+2)⊆B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合M={x|x2-3x≥0},N={x|1<x≤3},則(∁RM)∩N=( 。
A.[0,1)B.(0,3]C.(1,3)D.[1,3]

查看答案和解析>>

同步練習(xí)冊答案