若橢圓數(shù)學(xué)公式的左、右焦點(diǎn)分別為F1,F(xiàn)2,拋物線y2=4bx的焦點(diǎn)為M,若數(shù)學(xué)公式,則此橢圓的離心率為________.


分析:先根據(jù)橢圓和拋物線的方程分別求得其焦點(diǎn)坐標(biāo),進(jìn)而分別表示出 ,根據(jù)建立等式求得b和a的關(guān)系,進(jìn)而求得a和c的關(guān)系,則橢圓的離心率可得.
解答:依題意可知拋物線的焦點(diǎn)為M(b,0),橢圓的焦點(diǎn)為F2,0),F(xiàn)1(-,0)
,
,
①當(dāng)時(shí),
+b=2(b-),整理得9a2=10b2
∴e===;
②當(dāng)時(shí),
+b=-2(b-),整理得a2=10b2,
∴e===;
則此橢圓的離心率為
故答案為:
點(diǎn)評(píng):本題主要考查了橢圓和拋物線的簡(jiǎn)單性質(zhì).考查了學(xué)生基礎(chǔ)知識(shí)的理解和應(yīng)用以及基本的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(05年遼寧卷)(14分)

已知橢圓的左、右焦點(diǎn)分別是

,是橢圓外的動(dòng)點(diǎn),滿足,

點(diǎn)P是線段與該橢圓的交點(diǎn),點(diǎn)T在線段上,并且

滿足

(Ⅰ)設(shè)為點(diǎn)P的橫坐標(biāo),證明

(Ⅱ)求點(diǎn)T的軌跡C的方程;

(Ⅲ)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,使△的面積.若存在,求

的正切值;若不存在,請(qǐng)說(shuō)明理由.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(08年四川卷理)設(shè)橢圓的左、右焦點(diǎn)分別是,離心率,右準(zhǔn)線上的兩動(dòng)點(diǎn)、,且

(Ⅰ)若,求的值;

(Ⅱ)當(dāng)最小時(shí),求證共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的左、右焦點(diǎn)分別是,是橢圓外的動(dòng)點(diǎn),滿足,點(diǎn)是線段與該橢圓的交點(diǎn),點(diǎn)在線段上,并且滿足,

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)試問:在點(diǎn)的軌跡上,是否存在點(diǎn),使的面積,若存在,求的正切值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分12分)  已知橢圓的左、右焦點(diǎn)分別是F1(-c,0)、F2(c,0),Q是橢圓外的動(dòng)點(diǎn),滿足

點(diǎn)P是線段F1Q與該橢圓的交點(diǎn),

點(diǎn)T在線段F2Q上,并且滿足  

(Ⅰ)設(shè)為點(diǎn)P的橫坐標(biāo),證明

   (Ⅱ)求點(diǎn)T的軌跡C的方程; (Ⅲ)試問:在點(diǎn)T的軌跡C上,是否存在點(diǎn)M,

使△F1MF2的面積S=若存在,求∠F1MF2的正切值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年甘肅西北師大附中高三11月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓 的左、右焦點(diǎn)分別是、,是橢圓右準(zhǔn)線上的一點(diǎn),線段的垂直平分線過(guò)點(diǎn).又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。

(1) 求橢圓的離心率的取值范圍。

(2)當(dāng)離心率最小且時(shí),求橢圓的方程。

(3)若直線相交于(2)中所求得的橢圓內(nèi)的一點(diǎn),且與這個(gè)橢圓交于、兩點(diǎn),與這個(gè)橢圓交于、兩點(diǎn)。求四邊形ABCD面積的取值范圍。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案