【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知直線(xiàn)經(jīng)過(guò)點(diǎn),傾斜角,圓的極坐標(biāo)方程

(1)寫(xiě)出直線(xiàn)的參數(shù)方程,并把圓的方程化為直角坐標(biāo)方程;

(2)設(shè)圓上的點(diǎn)到直線(xiàn)的距離最近,點(diǎn)到直線(xiàn)的距離最遠(yuǎn),求點(diǎn)的橫坐標(biāo)之積.

【答案】(1) 圓的直角坐標(biāo)方程為;(2) 點(diǎn)的橫坐標(biāo)之積為.

【解析】試題分析:I)由題意可得直線(xiàn)l的參數(shù)方程為: t為參數(shù)).圓C的極坐標(biāo)方程是ρ=2cosθρ2=2ρcosθ,利用ρ2=x2+y2,x=ρcosθ即可化為直角坐標(biāo)方程.

II)經(jīng)過(guò)圓心(10)且與直線(xiàn)l垂直的直線(xiàn)方程為:y=x1),即直線(xiàn)AB的方程.與圓的方程聯(lián)立化為: .利用根與系數(shù)的關(guān)系即可得出.

試題解析:

(1)直線(xiàn)的參數(shù)方程為為參數(shù))

因?yàn)?/span> ,

所以,即圓的直角坐標(biāo)方程為.

(2)將直線(xiàn)的參數(shù)方程化為直角坐標(biāo)方程是

過(guò)圓心且垂直于的直線(xiàn)的方程為,

.

則直線(xiàn) 與圓 的交點(diǎn)為兩點(diǎn).

設(shè)點(diǎn)的橫坐標(biāo)分別為,聯(lián)立消去

,則.

故點(diǎn)的橫坐標(biāo)之積為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把函數(shù)y=sin3x的圖象向右平移 個(gè)長(zhǎng)度單位,所得曲線(xiàn)的對(duì)應(yīng)函數(shù)式(
A.y=sin(3x﹣
B.y=sin(3x+
C.y=sin(3x﹣
D.y=sin(3x+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知平面α與平面β相交于直線(xiàn)l,l1在平面α內(nèi),l2在平面β內(nèi),若直線(xiàn)l1和l2是異面直線(xiàn),則下列說(shuō)法正確的是(
A.l與都相交l1 , l2
B.l至少與l1 , l2中的一條相交
C.l至多與l1 , l2中的一條相交
D.l與l1 , l2都不相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=x+ (a>0)在區(qū)間 上單調(diào)遞減,在區(qū)間 上單調(diào)遞增;函數(shù)
(1)請(qǐng)寫(xiě)出函數(shù)f(x)=x2+ (a>0)與函數(shù)g(x)=xn+ (a>0,n∈N,n≥3)在(0,+∞)的單調(diào)區(qū)間(只寫(xiě)結(jié)論,不證明);
(2)求函數(shù)h(x)的最值;
(3)討論方程h2(x)﹣3mh(x)+2m2=0(0<m≤30)實(shí)根的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是邊長(zhǎng)為4的等邊三角形,D為AB邊中點(diǎn),且CC1=2AB.

(1)求證:平面C1CD⊥平面ABC;
(2)求證:AC1∥平面CDB1;
(3)求三棱錐D﹣CAB1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ,若存在實(shí)數(shù)x1 , x2 , x3 , x4 , 滿(mǎn)足x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),則 的取值范圍是( ).
A.(0,4)
B.(0,
C.( ,
D.( ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】正方形ABCD所在的平面與三角形CDE所在的平面交于CD,且AE⊥平面CDE.

(1)求證:AB∥平面CDE;
(2)求證:平面ABCD⊥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD是某小區(qū)戶(hù)外活動(dòng)空地的平面示意圖,其中AB=50米,AD=100米,現(xiàn)擬在直角三角形OMN內(nèi)栽植草坪供兒童踢球娛樂(lè)(其中,點(diǎn)OAD的中點(diǎn),OMON,點(diǎn)MAB上,點(diǎn)NCD),將破舊的道路AM重新鋪設(shè).已知草坪成本為每平方米20元,新道路AM成本為每米500元,設(shè)∠OMAθ,記草坪栽植與新道路鋪設(shè)所需的總費(fèi)用為f(θ).

(1)求f(θ)關(guān)于θ函數(shù)關(guān)系式,并寫(xiě)出定義域;

(2)為節(jié)約投入成本,當(dāng)tanθ為何值時(shí),總費(fèi)用 f(θ)最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn): ax+by=1(其中a,b是實(shí)數(shù)) 與圓:x2+y2=1(O是坐標(biāo)原點(diǎn))相交于A,B兩點(diǎn),且△AOB是直角三角形,點(diǎn)P(a,b)是以點(diǎn)M(0,1)為圓心的圓M上的任意一點(diǎn),則圓M的面積最小值為

查看答案和解析>>

同步練習(xí)冊(cè)答案