【題目】已知函數(shù)f(x)= ,若存在實數(shù)x1 , x2 , x3 , x4 , 滿足x1<x2<x3<x4 , 且f(x1)=f(x2)=f(x3)=f(x4),則 的取值范圍是( ).
A.(0,4)
B.(0,
C.( ,
D.( ,

【答案】B
【解析】解:由題意,可得﹣1<x1<0<x2<1<x3<1.5,4.5<x4<6, 則|log4(x1+1)|=|log4(x2+1)|,即為﹣log4(x1+1)
=log4(x2+1),
可得(x1+1)(x2+1)=1,
由y=cos x的圖象關(guān)于直線x=3對稱,可得x3+x4=6,
=x3x4﹣5=x3(6﹣x3)﹣5=﹣(x3﹣3)2+4在(1,1.5)遞增,
即有 的取值范圍是(0, ).
故選B.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線與曲線恰好相切于點,求實數(shù)的值;

(2)當時,恒成立,求實數(shù)的取值范圍;

(3)求證:. .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)求實數(shù)a的值;
(2)試判斷函數(shù)的單調(diào)性并加以證明;
(3)對任意的x∈R,不等式f(x)<m恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,把方程f(x)=x的根按從小到大的順序排列成一個數(shù)列,則該數(shù)列的通項公式為(
A. (n∈N*
B.an=n(n﹣1)(n∈N*
C.an=n﹣1(n∈N*
D.an=2n﹣2(n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線經(jīng)過點,傾斜角,圓的極坐標方程

(1)寫出直線的參數(shù)方程,并把圓的方程化為直角坐標方程;

(2)設圓上的點到直線的距離最近,點到直線的距離最遠,求點的橫坐標之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,E是正方形ABCD所在平面外一點,E在面ABCD上的正投影F恰在AC上,F(xiàn)G∥BC,AB=AE=2,∠EAB=60°,有以下四個命題:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作為鄰邊的平行四邊形面積是8;
(4)∠EAD=60°.
其中正確命題的個數(shù)為( )

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C的方程為:x2+y2=4
(1)求過點P(2,1)且與圓C相切的直線l的方程;
(2)直線l過點D(1,2),且與圓C交于A、B兩點,若|AB|=2 ,求直線l的方程;
(3)圓C上有一動點M(x0 , y0), =(0,y0),若向量 = + ,求動點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|y= },B={y|y=x ,x∈R},C={x|mx<﹣1},
(1)求R(A∩B);
(2)是否存在實數(shù)m使得(A∩B)C成立,若存在,求出m的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, , 為線段上一點, 的中點.

1)證明: 平面;

2)求直線與平面所成角的正弦值;

查看答案和解析>>

同步練習冊答案