5.已知圓心坐標(biāo)為(1,2),且與x軸相切的圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-2)2=4.

分析 由題意,求得方程的半徑,由圓心半徑求得圓的方程.

解答 解:由題意可知:圓與x軸相切,半徑為2,
∴圓方程為:(x-1)2+(y-2)2=4.
故答案為:(x-1)2+(y-2)2=4.

點(diǎn)評(píng) 本題考查圓的標(biāo)準(zhǔn)方程,直線與圓的關(guān)系,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在數(shù)列{an}中,a1=2,a3=8.若{an}為等差數(shù)列,則其前n項(xiàng)和為 Sn=$\frac{3{n}^{2}+n}{2}$;若{an}為等比數(shù)列,則其公比為±2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知定義在R上的函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≤0}\\{ln(x+a),x>0}\end{array}$,若方程f(x)=$\frac{1}{2}$有兩個(gè)不相等的實(shí)數(shù)根,則a的取值范圍是( 。
A.-$\frac{1}{2}$≤a<$\frac{1}{2}$B.$0≤a<\frac{1}{2}$C.0≤a<1D.$-\frac{1}{2}<a≤0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)滿足:
①對(duì)任意實(shí)數(shù)m,n都有f(m+n)+f(m-n)=2f(m)?f(n);
②對(duì)任意m∈R,都有f(1+m)=f(1-m)恒成立;
③f(x)不恒為0,且當(dāng)0<x<1時(shí),f(x)<1.
(1)求f(0),f(1)的值;
(2)判斷函數(shù)f(x)的奇偶性,并給出你的證明;
(3)定義:“若存在非零常數(shù)T,使得對(duì)函數(shù)g(x)定義域中的任意一個(gè)x,均有g(shù)(x+T)=g(x),則稱g(x)為以T為周期的周期函數(shù)”.試證明:函數(shù)f(x)為周期函數(shù),并求出$f(\frac{1}{3})+f(\frac{2}{3})+f(\frac{3}{3})+…+f(\frac{2017}{3})$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{f(x-3),x>0}\end{array}\right.$,則f(log26)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知拋物線y2=2px(p>0)的焦點(diǎn)為F,圓M的圓心在拋物線上且經(jīng)過坐標(biāo)原點(diǎn)O和點(diǎn)F,若圓M的半徑為3,則拋物線方程為( 。
A.y2=4xB.y2=6xC.y2=8xD.y2=16x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.“α為第二象限角”是“$\frac{α}{2}$為銳角”的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x2+2ax+3,x∈[-2,2]
(1)當(dāng)a=-1時(shí),求函數(shù)f(x)的最大值和最小值;
(2)記f(x)在區(qū)間[-2,2]上的最小值為g(a),求g(a)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.計(jì)算:C${\;}_{2n}^{17-n}$+C${\;}_{13+n}^{3n}$=( 。
A.29B.30C.31D.32

查看答案和解析>>

同步練習(xí)冊(cè)答案