16.已知集合A={-1,0,1,2,3,4,5},B={b|b=n2-1,n∈Z},則A∩B=(  )
A.{-1,3}B.{0,3}C.{-1,0,3}D.{-1,0,3,5}

分析 化簡集合B,根據(jù)交集的定義寫出A∩B.

解答 解:集合A={-1,0,1,2,3,4,5},
B={b|b=n2-1,n∈Z}={-1,0,3,8,15,…,},
∴A∩B={-1,0,3}.
故選:C.

點評 本題考查了交集的定義與應用問題,是基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

6.點P(4,0)關(guān)于直線5x+4y+21=0的對稱點的坐標是(-6,-8).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.若$z=\frac{1+i}{1-i}$,則$|{\bar z}|$=(  )
A.iB.-iC.-1D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知單位向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,則$|{\overrightarrow a-3\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{3}$C.$\sqrt{13}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知多面體ABCDEF中,四邊形ABCD為平行四邊形,AD⊥平面AEC,且$AC=\sqrt{2}$,AE=EC=1,AD=2EF,EF∥AD.
(Ⅰ)求證:平面FCE⊥平面ADE;
(Ⅱ)若AD=2,求多面體ABCDEF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知函數(shù)$f(x)=\left\{\begin{array}{l}{x^3}\\-{x^3}\end{array}\right.\begin{array}{l}x≥0,\\ x<0,\end{array}$,若f(3a-1)≥8f(a),則實數(shù)a的取值范圍為$({-∞,\frac{1}{5}}]∪[{1,+∞})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的短軸長等于焦距,則橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{2}}}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.(1)解不等式|x+1|+|x+3|<4;
(2)若a,b滿足(1)中不等式,求證:2|a-b|<|ab+2a+2b|.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知一長方體的體對角線的長為l0,這條對角線在長方體一個面上的正投影長為8,則這個長方體體積的最大值為( 。
A.64B.128C.192D.384

查看答案和解析>>

同步練習冊答案