【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點(diǎn)D,D1分別為AC,A1C1上的點(diǎn).
(1)當(dāng)的值等于何值時(shí),BC1∥平面AB1D1;
(2)若平面BC1D∥平面AB1D1,求的值.
【答案】(1)1; (2)1.
【解析】
(1)取為線段的中點(diǎn),此時(shí)=1,連接交于點(diǎn),連接,在中,點(diǎn)分別為的中點(diǎn),得,進(jìn)而證得面.
(2)由已知,平面平面,進(jìn)而得到和,進(jìn)而可求解.
(1)如圖所示,取D1為線段A1C1的中點(diǎn),
此時(shí)=1,連接A1B交AB1于點(diǎn)O,連接OD1.
由棱柱的性質(zhì),知四邊形A1ABB1為平行四邊形,所以點(diǎn)O為A1B的中點(diǎn).
在△A1BC1中,點(diǎn)O,D1分別為A1B,A1C1的中點(diǎn),∴OD1∥BC1.
又∵OD1平面AB1D1,BC1平面AB1D1,
∴BC1∥平面AB1D1.∴時(shí),BC1∥平面AB1D1.
(2)由已知,平面BC1D∥平面AB1D1,且平面A1BC1∩平面BDC1=BC1,
平面A1BC1∩平面AB1D1=D1O,因此BC1∥D1O,同理AD1∥DC1.
∴.又∵,∴,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,橢圓E: =1(a>b>0)的左、右焦點(diǎn)分別為F1 , F2 , 離心率為 ,兩準(zhǔn)線之間的距離為8.點(diǎn)P在橢圓E上,且位于第一象限,過點(diǎn)F1作直線PF1的垂線l1 , 過點(diǎn)F2作直線PF2的垂線l2 .
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l1 , l2的交點(diǎn)Q在橢圓E上,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分14分)
如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1) 證明:AD⊥平面PBC;
(2) 在∠ACB的平分線上確定一點(diǎn)Q,使得PQ∥平面ABD,并求此時(shí)PQ的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,直線與橢圓交于兩點(diǎn),記的面積為
(1)當(dāng)時(shí),求的最大值;
(2)當(dāng)時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,動(dòng)點(diǎn)滿足.
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)點(diǎn)為軌跡上異于原點(diǎn)的兩點(diǎn),且.
①若為常數(shù),求證:直線過定點(diǎn);
②求軌跡上任意一點(diǎn)到①中的點(diǎn)距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線過橢圓的右焦點(diǎn)且與橢圓交于兩點(diǎn), 為中點(diǎn), 的斜率為.
(1)求橢圓的方程;
(2)設(shè)是橢圓的動(dòng)弦,且其斜率為1,問橢圓上是否存在定點(diǎn),使得直線的斜率滿足?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】命題p:關(guān)于x的方程x2+ax+2=0無實(shí)根,命題q:函數(shù)f(x)=logax在(0,+∞)上單調(diào)遞增,若“p∧q”為假命題,“p∨q”真命題,求實(shí)數(shù)a的取值范圍
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com