【題目】(本小題滿分14分)
如圖1,在三棱錐P-ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1) 證明:AD⊥平面PBC;
(2) 在∠ACB的平分線上確定一點(diǎn)Q,使得PQ∥平面ABD,并求此時(shí)PQ的長(zhǎng).
【答案】(1)詳見(jiàn)解析;(2).
【解析】
(1)易證再證即可.
(II) 確定Q的位置是解決此問(wèn)題的關(guān)鍵:取AB的中點(diǎn)O,連接CO并延長(zhǎng)至Q,使得CQ=2CO,連接PQ,OD,點(diǎn)Q即為所求.
證明:(1)因?yàn)?/span>,,所以
又因?yàn)?/span>,所以,所以………………4分
由三視圖可得在中,,為的中點(diǎn),所以
所以………………………………………6分
(2)取AB的中點(diǎn)O,連接CO并延長(zhǎng)至Q,使得CQ=2CO,
連接PQ,OD,點(diǎn)Q即為所求.………………8分
因?yàn)?/span>O為CQ的中點(diǎn),D為PC的中點(diǎn),所以
…………………………10分
連接AQ,BQ,
四邊形的對(duì)角線互相平分,且,
四邊形為正方形,
即為的平分線
又,
在直角三角形中,………………14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃2011年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300分鐘的廣告,廣告費(fèi)用不超過(guò)9萬(wàn)元.甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘.假定甲、乙兩個(gè)電視臺(tái)為該公司每分鐘所做的廣告,能給公司帶來(lái)的收益分別為0.3 萬(wàn)元和0.2萬(wàn)元.問(wèn):該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司收益最大,最大收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AD∥BC,∠BAD=90°,PA=AD=AB=2BC=2,過(guò)AD的平面分別交PB,PC于M,N兩點(diǎn).
(1)求證:MN∥BC;
(2)若M,N分別為PB,PC的中點(diǎn),
①求證:PB⊥DN;
②求二面角P-DN-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某幾何體的三視圖和直觀圖如圖所示,其正視圖為矩形,左視圖為等腰直角三角形,俯視圖為直角梯形.
(1)證明:平面BCN⊥平面C1NB1;
(2)求二面角C-NB1-C1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n∈N* , n≥2),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,…,m+n的抽屜內(nèi),其中第k次取出的球放入編號(hào)為k的抽屜(k=1,2,3,…,m+n).
1 | 2 | 3 | … | m+n |
(Ⅰ)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;
(Ⅱ)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(X)是X的數(shù)學(xué)期望,證明E(X)< .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】海水養(yǎng)殖場(chǎng)進(jìn)行某水產(chǎn)品的新、舊網(wǎng)箱養(yǎng)殖方法的產(chǎn)量對(duì)比,收獲時(shí)各隨機(jī)抽取了100個(gè)網(wǎng)箱,測(cè)量各箱水產(chǎn)品的產(chǎn)量(單位:kg),其頻率分布直方圖如下:
(Ⅰ)記A表示時(shí)間“舊養(yǎng)殖法的箱產(chǎn)量低于50kg”,估計(jì)A的概率;
(Ⅱ)填寫(xiě)下面列聯(lián)表,并根據(jù)列聯(lián)表判斷是否有99%的把握認(rèn)為箱產(chǎn)量與養(yǎng)殖方法有關(guān):
箱產(chǎn)量<50kg | 箱產(chǎn)量≥50kg | |
舊養(yǎng)殖法 | ||
新養(yǎng)殖法 |
(Ⅲ)根據(jù)箱產(chǎn)量的頻率分布直方圖,對(duì)兩種養(yǎng)殖方法的優(yōu)劣進(jìn)行比較.
附:
P(K2≥K) | 0.050 | 0.010 | 0.001 |
K | 3.841 | 6.635 | 10.828 |
K2= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在斜三棱柱ABC—A1B1C1中,點(diǎn)D,D1分別為AC,A1C1上的點(diǎn).
(1)當(dāng)的值等于何值時(shí),BC1∥平面AB1D1;
(2)若平面BC1D∥平面AB1D1,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以等腰直角三角形斜邊BC上的高AD為折痕,把△ABD和△ACD折成互相垂直的兩個(gè)平面后,某學(xué)生得出下列四個(gè)結(jié)論:
①;
②∠BAC=60°;
③三棱錐D﹣ABC是正三棱錐;
④平面ADC和平面ABC的垂直.
其中正確的是( 。
A. ①② B. ②③ C. ③④ D. ①④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,已知圓圓心為,過(guò)點(diǎn)且斜率為的直線與圓相交于不同的兩點(diǎn)、.
()求的取值范圍;
()是否存在常數(shù),使得向量與共線?如果存在,求值;如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com